Answer:
The mass of water = 219.1 grams
Explanation:
Step 1: Data given
Mass of aluminium = 32.5 grams
specific heat capacity aluminium = 0.921 J/g°C
Temperature = 82.4 °C
Temperature of water = 22.3 °C
The final temperature = 24.2 °C
Step 2: Calculate the mass of water
Heat lost = heat gained
Qlost = -Qgained
Qaluminium = -Qwater
Q = m*c*ΔT
m(aluminium)*c(aluminium)*ΔT(aluminium) = -m(water)*c(water)*ΔT(water)
⇒with m(aluminium) = the mass of aluminium = 32.5 grams
⇒with c(aluminium) = the specific heat of aluminium = 0.921 J/g°C
⇒with ΔT(aluminium) = the change of temperature of aluminium = 24.2 °C - 82.4 °C = -58.2 °C
⇒with m(water) = the mass of water = TO BE DETERMINED
⇒with c(water) = 4.184 J/g°C
⇒with ΔT(water) = the change of temperature of water = 24.2 °C - 22.3 °C = 1.9 °C
32.5 * 0.921 * -58.2 = -m * 4.184 * 1.9
-1742.1 = -7.95m
m = 219.1 grams
The mass of water = 219.1 grams
Answer:
Sodium Borohydride (NaBH₄)
Explanation:
Methyl diantilis (2-Ethoxy-4-(methoxymethyl)phenol) is a fragrance compound which smells like Vanilla. This compound is being synthesized from 3-ethoxy-4-hydroxybenzaldehyde also known as Ethyl Vanillin in two steps.
Step 1: Reduction of Aldehydic Group on Ethyl Vanillin:
The benzaldehyde derivative is treated with a mild reducing agent i.e. NaBH₄ (Sodium Borohydride). NaBH₄ is a source of Hydride (H⁻) ion and undergoes nucleophilic substitution reaction yielding 2-ethoxy-4-(hydroxymethyl)phenol.
Step 2: Etherification of 2-ethoxy-4-(hydroxymethyl)phenol:
In the second step 2-ethoxy-4-(hydroxymethyl)phenol is treated with Methanol in the presence of strong acidic polymeric resin known as Amberlyst-15-wet resulting in the formation of Methyl diantilis as shown in attached figure.
Answer:
483.27 minutes
Explanation:
using second faradays law of electrolysis
Answer:
See explaination
Explanation:
See attachment for the detailed step by step solution of the given problem.
The attached file have the solved problem.
Need more info but polyatomic ion mean multiple atoms that are unstable how they are and the bond together