Explanation:
A volatile substance is defined as the substance which can easily evaporate into the atmosphere due to weak intermolecular forces present within its molecules.
Whereas a flammable substance is defined as a substance which is able to catch fire easily when it comes in contact with flame.
Hence, when we heat a flammable or volatile solvent for a recrystallization then it should be kept in mind that should heat the solvent in a stoppered flask to keep vapor away from any open flames so that it won't catch fire.
And, you should ensure that no one else is using an open flame near your experiment.
Thus, we can conclude that following statements are correct:
- You should heat the solvent in a stoppered flask to keep vapor away from any open flames.
- You should ensure that no one else is using an open flame near your experiment.
The balanced equation given is:
4NH3 + 3O2 .....> 2N2 + 6H2O
From this equation, we can note that 4 moles of NH3 are required to produce 2 moles of N2.
Therefore, the mole ratio of NH3 to N2 is 4:2 which can be simplified into 2:1
Answer:
(II) only correctly rank the bonds in terms of increasing polarity.
Explanation:
Bond polarity is proportional to difference in electronegativity between bonded atoms.
Atoms Electronegativity Bond Electronegativity difference
Cl 3.0 Cl-F 1.0
Br 2.8 Br-Cl 0.2
F 4.0 Cl-Cl 0
H 2.1 H-C 0.4
C 2.5 H-N 0.9
N 3.0 H-O 1.4
O 3.5 Br-F 1.2
I 2.7 I-F 1.3
Si 1.9 Cl-F 1.0
P 2.2 Si-Cl 1.1
Si-P 0.3
Si-C 0.6
Si-F 2.1
So, clearly, order of increasing polarity : O-H > N-H > C-H
So, (II) only correctly rank the bonds in terms of increasing polarity
Answer:
H2O<en<phen
Explanation:
The degree of d- splitting is observed from the intensity of colour. The order of d splitting from least to greatest is H2O<en<phen. Phen shows the greatest d-splitting. The degree of splitting of d- orbitals by ligands depends on their relative positions in the spectrochemical series. The spectrochemical series is an experimentally determined series. The series separates the ligands into strong field and weak field ligands. Strong field ligands are found towards the end of the series. Strong field ligands such as en and phen can participate in metal to ligand or ligand to metal pi-bonding. Hence they cause more d-splitting. Ethylendiamine and phenanthroline occur towards the end of the spectrochemical series hence the higher order of d-splitting.
<span>biological reactions that happen within cells while reducing the complex interactions found in a whole cell. Eukaryotic and prokaryotic cells have been used for creation of these simplified environments[1]. Subcellular fractions can be isolated by ultracentrifugation to provide molecular machinery that can be used in reactions in the absence of many of the other cellular components.
Cell-free biosystems can be prepared by mixing a number of purified enzymes and coenzymes. Cell-free biosystems are proposed as a new low-cost biomanufacturing platform compared to microbial fermentation used for thousands of years. Cell-free biosystems have several advantages suitable in industrial applications</span>