Answer:
I think the answer is right.isn't The rectangle width 8 and length 11 inches
Answer:
Step-by-step explanation:
n + q = 20
.05n + .25q = 3.00
5n + 25q = 300
n + q = 20
5n + 25q = 300
-5n - 5q = -100
20q = 200
q = 10 quarters
n + 10 = 20
n = 10 nickels
(10 nickels, 10 quarters)
You do the implcit differentation, then solve for y' and check where this is defined.
In your case: Differentiate implicitly: 2xy + x²y' - y² - x*2yy' = 0
Solve for y': y'(x²-2xy) +2xy - y² = 0
y' = (2xy-y²) / (x²-2xy)
Check where defined: y' is not defined if the denominator becomes zero, i.e.
x² - 2xy = 0 x(x - 2y) = 0
This has formal solutions x=0 and y=x/2. Now we check whether these values are possible for the initially given definition of y:
0^2*y - 0*y^2 =? 4 0 =? 4
This is impossible, hence the function is not defined for 0, and we can disregard this.
x^2*(x/2) - x(x/2)^2 =? 4 x^3/2 - x^3/4 = 4 x^3/4 = 4 x^3=16 x^3 = 16 x = cubicroot(16)
This is a possible value for y, so we have a point where y is defined, but not y'.
The solution to all of it is hence D - { cubicroot(16) }, where D is the domain of y (which nobody has asked for in this example :-).
(Actually, the check whether 0 is in D is superfluous: If you write as solution D - { 0, cubicroot(16) }, this is also correct - only it so happens that 0 is not in D, so the set difference cannot take it out of there ...).
If someone asks for that D, you have to solve the definition for y and find that domain - I don't know of any [general] way to find the domain without solving for the explicit function).
Answer:
=(k−1)*P(X>k−1) or (k−1)365k(365k−1)(k−1)!
Step-by-step explanation:
First of all, we need to find PMF
Let X = k represent the case in which there is no birthday match within (k-1) people
However, there is a birthday match when kth person arrives
Hence, there is 365^k possibilities in birthday arrangements
Supposing (k-1) dates are placed on specific days in a year
Pick one of k-1 of them & make it the date of the kth person that arrives, then:
The CDF is P(X≤k)=(1−(365k)k)/!365k, so the can obtain the PMF by
P(X=k) =P (X≤k) − P(X≤k−1)=(1−(365k)k!/365^k)−(1−(365k−1)(k−1)!/365^(k−1))=
(k−1)/365^k * (365k−1) * (k−1)!
=(k−1)*(1−P(X≤k−1))
=(k−1)*P(X>k−1)