The answer to this problem would be about 4 hours
Answer:
V=2
Step-by-step explanation:
For the inverse variation equation p = StartFraction 8 Over V EndFraction, what is the value of V when p = 4?
P=8/V
Inverse variation is expressed as
y=k/x
Where,
k= constant.
From the question,
P=8/V
Where,
8=constant
What is the value of V when p=4
P=8/V
Make V the subject of the formula
pV=8
V=8/p
Substitute the value of p
V=8/4
V=2
Use formula

![\sqrt[3]{27(\cos{330^o}+i\sin{330^o})} \\\sqrt[3]{27e^{i330^o} } \\ \sqrt[3]{27} \sqrt[3]{e^{i330^o}} \\ \sqrt[3]{3^3} \sqrt[3]{e^{i110^o\times 3}} \\ \sqrt[3]{3^3} \sqrt[3]{(e^{i110^o})^ 3}} \\ 3e^{i110^o} \\3(\cos{110^o}+i\sin{110^o})](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B27%28%5Ccos%7B330%5Eo%7D%2Bi%5Csin%7B330%5Eo%7D%29%7D%20%0A%5C%5C%5Csqrt%5B3%5D%7B27e%5E%7Bi330%5Eo%7D%20%7D%0A%5C%5C%20%20%5Csqrt%5B3%5D%7B27%7D%20%20%5Csqrt%5B3%5D%7Be%5E%7Bi330%5Eo%7D%7D%20%0A%5C%5C%20%5Csqrt%5B3%5D%7B3%5E3%7D%20%5Csqrt%5B3%5D%7Be%5E%7Bi110%5Eo%5Ctimes%203%7D%7D%20%0A%5C%5C%20%5Csqrt%5B3%5D%7B3%5E3%7D%20%5Csqrt%5B3%5D%7B%28e%5E%7Bi110%5Eo%7D%29%5E%203%7D%7D%20%0A%5C%5C%203e%5E%7Bi110%5Eo%7D%0A%5C%5C3%28%5Ccos%7B110%5Eo%7D%2Bi%5Csin%7B110%5Eo%7D%29)
Since

and

there are two more solutions:
1.

2.