answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vladimir [108]
2 years ago
14

What temperature, in ∘c, is a blackbody whose emission spectrum peaks at 250 nm ?

Physics
1 answer:
Anettt [7]2 years ago
6 0
Wein's law states that:

Peak wavelength (m)*Temperature (K) = 2.898*10^-3 m.K

In this  case, Peak spectrum = 250 nm = 250*10^-9 m

Temperature (K) = (2.898*10^-3)/(250*10^-9) = 11592 K

In °C, Temperature =  11592-273.15 = 11,318.85 °C
You might be interested in
a 4357 kg roller coaster car starts from rest at the top of a 36.5 m high track. determine the speed of the car at the top of a
andrey2020 [161]
The correct answer is 17.24 m/s. You get the answer by subtracting the two heights of the tracks which are 36.5 and 10.8 m, and the answer is 25.7. Since you already know the height at which the kinetic energy will be coming from, you then divide the amount of weight the roller coaster has to the distance it needs to travel in order for you to determine the speed of the car. So that is, 4,357 kg and 25.7 m and the answer is 169 kg/m. Dividing it to the earth's gravity of 9.8 m/s you'll get 17.24 m/s.
4 0
2 years ago
Argon in the amount of 1.5 kg fills a 0.04-m3 piston cylinder device at 550 kPa. The piston is now moved by changing the weights
Arlecino [84]

Answer:

               275 kPa

Explanation:

             mass of the gas=m=1.5 kg

             initial volume if the gas=V₁=0.04 m³

             initial pressure of the gas= P₁=550 kPa

as the condition is given final volume is double the initial volume

             V₂=final volume

             V₂=2 V₁

As the temperature is constant

             T₁=T₂=T

\frac{P1V1}{T1}=\frac{P2 V2}{T2}

putting the values in the equation.

\frac{P1V1}{T1}=\frac{P2 *2V1}{T2}

P₂=\frac{P1}{2}

P₂=\frac{550}{2}

P₂=275 kPa

So the final pressure of the gas is 275 kPa.

           

3 0
2 years ago
The same physics student jumps off the back of her Laser again, but this time the Laser is
soldi70 [24.7K]

a) The speed of the student after the jump is 1.07 m/s

b) The final speed of the laser is 10.4 m/s

Explanation:

a)

We can solve this problem by applying the law of conservation of momentum: if there are no external forces acting on the system, the total momentum of the student+Laser system must be constant. Therefore, we can write:

p_i = p_f\\0=mv+MV

where

The initial momentum is zero

m = 42 kg is the mass of the Laser

v = 1.5 m/s is the final velocity of the Laser

M = 59 kg is the mass of the student

V is the final velocity of the student

Solving the equation for V, we find the velocity of the student:

V=-\frac{mv}{M}=-\frac{(42)(1.5)}{59}=-1.07 m/s

So, the final speed of the student is 1.07 m/s.

b)

In this case, the laser and the student are travelling at 3.1 m/s before the student jumps off: therefore, the total momentum before the jump is not zero.

So, the equation of the conservation of momentum is

(m+M)u=mv+MV

where

m = 42 kg is the mass of the Laser

M = 59 kg is the student's mass

u = 3.1 m/s is the initial velocity of the student and the Laser

V = -2.1 m/s is the velocity of the student after the jump (she jumps backward)

v is the final velocity of the Laser

And solving for v, we find

v=\frac{(m+M)u-MV}{m}=\frac{(42+59)(3.1)-(59)(-2.1)}{42}=10.4 m/s

Learn more about momentum:

brainly.com/question/7973509

brainly.com/question/6573742

brainly.com/question/2370982

brainly.com/question/9484203

#LearnwithBrainly

3 0
2 years ago
Read 2 more answers
You have been hired to check the technical correctness of an upcoming made-for-TV murder mystery that takes place in a space shu
AlladinOne [14]

Answer:

The astronaut who has a mass of 80 kg without the toolkit do survive with 40 seconds of remaining air

Explanation:

Due the astronaut throws the 10-kg tool kit away with a speed of 8 m/s, it gives a momentum equivalent but in the other direction, so I=mv=(10Kg)(8m/s)=80kg*m/s, then we can find the speed that the astronaut reaches due to its weight we get, v=\frac{I}{m} =\frac{80kg*m/s}{80Kg} =1m/s.

Finally, as the distance to the space shuttle is 200m, the time taken to the astronaut to reach it at the given speed will be t=\frac{d}{v}=\frac{200m}{1m/s}=200s, as the remaining air time is 4 min or 240 seconds, The astronaut who has a mass of 80 kg without the toolkit do survive with 40 seconds of remaining air.

5 0
2 years ago
Transverse waves on a string have wave speed v=8.00 m/s, amplitude A=0.0700m, and direction, and at t=0 the x-0 end of the wavel
Vilka [71]

Answer:

a. frequency = 25 Hz, period = 0.04 s , wave number = 19.63 rad/m

b. y = (0.0700 m)sin[(19.63 rad/m)x - (157.08 rad/s)t]

c.  0.0496 m

d. 0.03 s

Explanation:

a. Frequency, f = v/λ where v = wave speed = 8.00 m/s and λ = wavelength = 0.320 m

f = v/λ = 8.00 m/s ÷ 0.320 m = 25 Hz

Period, T = 1/f = 1/25 = 0.04 s

Wave number k = 2π/λ = 2π/0.320 m = 19.63 rad-m⁻¹

b. Using y = Asin(kx - ωt) the equation of a wave

where y = displacement of the wave, A = amplitude of wave = 0.0700 m and ω = angular speed of wave = 2π/T = 2π/0.04 s = 157.08 rad/s

Substituting the variables into y, we have

y = (0.0700 m)sin[(19.63 rad/m)x - (157.08 rad/s)t]

c. When x = 0.360 m and t = 0.150 s, we substitute these into y to obtain

y = (0.0700 m)sin[(19.63 rad/m)x - (157.08 rad/s)t]

y = (0.0700 m)sin[(19.63 rad/m × 0.360 m) - (157.08 rad/s × 0.150 s)]

y = (0.0700 m)sin[(7.0668 rad) - (23.562 rad)]

y = (0.0700 m)sin[-16.4952 rad]

y = (0.0700 m) × 0.7084

y = 0.0496 m

d. For the particle at x = 0.360 m to reach its next maximum displacement, y = 0.0700 m at time t. So,

y = (0.0700 m)sin[(19.63 rad/m)x - (157.08 rad/s)t]

0.0700 m = (0.0700 m)sin[(19.63 rad/m × 0.360 m) - (157.08 rad/s)t]

0.0700 m = (0.0700 m)sin[(7.0668 rad - (157.08 rad/s)t]  

Dividing through by 0.0700 m, we have

1 = sin[(7.0668 rad - (157.08 rad/s)t]

sin⁻¹(1) = 7.0668 rad - (157.08 rad/s)t  

π/2 = 7.0668 rad - (157.08 rad/s)t

π/2 - 7.0668 rad = - (157.08 rad/s)t

-5.496 rad = - (157.08 rad/s)t

t = -5.496 rad/(-157.08 rad/s) = 0.03 s

6 0
2 years ago
Other questions:
  • A 5.00 kilogram mass is traveling at 100 meters per second. Determine the speed of the mass after an impulse of 30 Newton * seco
    12·2 answers
  • Compare the density, weight, mass, and volume of a pound of gold to a pound of iron on the surface of Earth.
    11·1 answer
  • An object undergoing simple harmonic motion has a maximum displacement of 6.2 m at t=0.0 s. if the angular frequency of oscillat
    12·1 answer
  • Two 0.40 kg soccer ball collide elastically in a head-on collision. The first ball starts at rest, and the second ball has a spe
    8·2 answers
  • A resistor R1 is wired to a battery, then resistor R2 is added in series. Are (a) the potential difference across R1 and (b) the
    6·1 answer
  • It has been proposed that extending a long conducting wire from a spacecraft (a "tether") could be used for a variety of applica
    9·1 answer
  • An object weighs 980N on the earth’s surface (i) What is its mass? (ii) If the same object weighs 360N on another planet, find t
    12·1 answer
  • A hockey puck with a mass of 0.16 kg travels at a velocity of 40 m/s toward a goalkeeper. The goalkeeper has a mass of 120 kg an
    9·1 answer
  • A policeman kicks in a door with a force of 4500 N. What force does the door apply to the policeman’s leg?
    5·1 answer
  • Question
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!