answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maru [420]
2 years ago
10

The same physics student jumps off the back of her Laser again, but this time the Laser is

Physics
2 answers:
soldi70 [24.7K]2 years ago
3 0

a) The speed of the student after the jump is 1.07 m/s

b) The final speed of the laser is 10.4 m/s

Explanation:

a)

We can solve this problem by applying the law of conservation of momentum: if there are no external forces acting on the system, the total momentum of the student+Laser system must be constant. Therefore, we can write:

p_i = p_f\\0=mv+MV

where

The initial momentum is zero

m = 42 kg is the mass of the Laser

v = 1.5 m/s is the final velocity of the Laser

M = 59 kg is the mass of the student

V is the final velocity of the student

Solving the equation for V, we find the velocity of the student:

V=-\frac{mv}{M}=-\frac{(42)(1.5)}{59}=-1.07 m/s

So, the final speed of the student is 1.07 m/s.

b)

In this case, the laser and the student are travelling at 3.1 m/s before the student jumps off: therefore, the total momentum before the jump is not zero.

So, the equation of the conservation of momentum is

(m+M)u=mv+MV

where

m = 42 kg is the mass of the Laser

M = 59 kg is the student's mass

u = 3.1 m/s is the initial velocity of the student and the Laser

V = -2.1 m/s is the velocity of the student after the jump (she jumps backward)

v is the final velocity of the Laser

And solving for v, we find

v=\frac{(m+M)u-MV}{m}=\frac{(42+59)(3.1)-(59)(-2.1)}{42}=10.4 m/s

Learn more about momentum:

brainly.com/question/7973509

brainly.com/question/6573742

brainly.com/question/2370982

brainly.com/question/9484203

#LearnwithBrainly

Guest1 year ago
0 0

m = 42kg
M = 59 kg
u = 3.1 m/s
V = -2.1 m/s
V=(m+M)u-Mv/m
=(42+59)(3.1)-(59)(-2.1)/42

10.4m/s



You might be interested in
A block moves at 5 m/s in the positive x direction and hits an identical block, initially at rest. A small amount of gunpowder h
Anestetic [448]

Answer:

Speed of 1.83 m/s and 6.83 m/s

Explanation:

From the principle of conservation of momentum

mv_o=m(v_1 + v_2) where m is the mass, v_o is the initial speed before impact, v_1 and v_2 are velocity of the impacting object after collision and velocity after impact of the originally constant object

5m=m(v_1 +v_2)

Therefore v_1+v_2=5

After collision, kinetic energy doubles hence

2m*(0.5mv_o)=0.5m(v_1^{2}+v_2^{2})

2v_o^{2}=v_1^{2} + v_2^{2}

Substituting 5 m/s for v_o then

2*(5^{2})= v_1^{2} + v_2^{2}

50= v_1^{2} + v_2^{2}

Also, it’s known that v_1+v_2=5 hence v_1=5-v_2

50=(5-v_2)^{2}+ v_2^{2}

50=25+v_2^{2}-10v_2+v_2^{2}

2v_2^{2}-10v_2-25=0

Solving the equation using quadratic formula where a=2, b=-10 and c=-25 then v_2=6.83 m/s

Substituting, v_1=-1.83 m/s

Therefore, the blocks move at a speed of 1.83 m/s and 6.83 m/s

6 0
2 years ago
4. A 505-turn circular-loop coil with a diameter of 15.5 cm is initially aligned so that
Basile [38]

The strength of the magnetic field is 4.8\cdot 10^{-5} T

Explanation:

According to Faraday's Law, the magnitude of the induced emf in the coil is equal to the rate of changeof the flux linkage through the coil:

\epsilon = \frac{N\Delta \Phi}{\Delta t} (1)

where

N = 505 is the number of turns in the coil

\Delta \Phi is the change in magnetic flux through the coil

\Delta t = 2.77 ms = 2.77\cdot 10^{-3} s is the time interval

\epsilon = 0.166 V

The coil is rotated from a position perpendicular to the Earth's magnetic field to a position parallel to it, so the final flux is zero, and the magnitude of the flux change is simply equal to the initial flux:

\Delta \Phi = B A cos \theta

where

B is the strength of the magnetic field

A is the area of the coil

\theta=0^{\circ} is the angle between the normal to the coil and the field

The area of the coil can be written as

A=\pi r^2

where

r=\frac{15.5 cm}{2}=7.75 cm = 7.75\cdot 10^{-2} m is its radius

Substituting everything into eq.(1) and solving for B, we find:

\epsilon= \frac{NB\pi r^2 cos \theta}{\Delta t}\\B=\frac{\epsilon \Delta t}{\pi r^2 cos \theta}=\frac{(0.166)(2.77\cdot 10^{-3})}{(505)\pi (7.75\cdot 10^{-2})^2(cos 0^{\circ})}=4.8\cdot 10^{-5} T

Learn more about magnetic fields:

brainly.com/question/3874443

brainly.com/question/4240735

#LearnwithBrainly

8 0
2 years ago
Read 2 more answers
Based on the emf value measured at frame 700, what is the average magnitude of the magnetic field inside the magnet assembly? No
Nadusha1986 [10]

Answer:

The average magnitude of magnetic field B= 0.0433/ d Tesla

(You have not provided length of side of loop, so if you divide this value by length you will get value of magnetic field.)

Explanation:

Induced emf

where B= magnetic field  

d= breadth of rectangular piece

V= velocity with which the rectangular piece = o.o6m/s

n= no of turns  = 10

EMF = 26mV

since d (breadth of the frame) is not given, I will use it as a variable

EMF= n×B×d×V ------------------(1) (EMF induced due to multiple turns)

From eq 1, we get

B= (EMF)/(n d V)

B= (26 X 0.001) / (10 d 0.06)

B= 0.0433/ d Tesla

4 0
2 years ago
Io, a satellite of Jupiter, is the most volcanically active moon or planet in the solar system. It has volcanoes that send plume
Mamont248 [21]

Answer:

1331.84 m/s

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity = 0

s = Displacement = 490 km

a = Acceleration

g = Acceleration due to gravity = 1.81 m/s² = a

From equation of linear motion

v^2-u^2=2as\\\Rightarrow -u^2=2as-v^2\\\Rightarrow u=\sqrt{v^2-2as}\\\Rightarrow u=\sqrt{0^2-2\times -1.81\times 490000}\\\Rightarrow u=1331.84\ m/s

The speed of the material must be 1331.84 m/s in order to reach the height of 490 km

3 0
2 years ago
Read 2 more answers
A basketball rolls off a deck that is 3.2 m from the pavement. The basketball lands 0.75 m from the edge of the deck. How fast w
astra-53 [7]

Answer:

d). The value of y should be -32m

Vx=0.92 m/s

Explanation:

Using equation of motion uniform to y motion

x_{f}=x_{o}+v_{o}*t+\frac{1}{2}*a*t^{2}\\x_{o}=0m\\v_{o}=0\\x_{f}=\frac{1}{2}*a*t^{2}\\x_{f}=-3.2m \\a=g=-9.8\frac{m}{s^{2}} \\

So to find t that is the same time for all the motion

t^{2}=\frac{2*x_{f}}{a} \\t=\sqrt{\frac{2*x_{f}}{a}}=\sqrt{\frac{2*-3.2m}{-9.8\frac{m}{s^{2}}}}\\t=0.808s

The value of Xf=-3.2m because the g is negative from the axis

Now in the axis 'x' to find Vx

Vx=\frac{0.75m}{0.808S}\\ Vx=0.92 \frac{m}{s}

5 0
2 years ago
Other questions:
  • Noah drops a rock with a density of 1.73 g/cm3 into a pond. Will the rock float or sink?
    9·2 answers
  • What is tarzan's speed vf just before he reaches jane? express your answer in meters per second to two significant figures?
    7·1 answer
  • Bill has a mass of 85 kg and is skating west. He increases his speed from 3 m/s to 5 m/s by applying a force for 3 seconds. What
    11·1 answer
  • Two tiny particles having charges 20.0 μC and 8.00 μC are separated by a distance of 20.0 cm What are the magnitude and directio
    8·1 answer
  • The table below shows data of sprints of animals that traveled 75 meters. At each distance marker, the animals' times were recor
    6·2 answers
  • Which number can each term of the equation be multiplied by to eliminate the fractions before solving? 6 – x + = 6 minus StartFr
    13·2 answers
  • Would an oil ship moving at a speed of 10km/h have more or less momentum than a car moving at a speed of 100km/h? Explain your a
    15·2 answers
  • A very long uniform line of charge has charge per unit length λ1 = 4.80 μC/m and lies along the x-axis. A second long uniform li
    14·1 answer
  • If an electromagnetic wave has components Ey = E0 sin(kx - ωt) and Bz = B0 sin(kx - ωt), in what direction is it traveling?
    11·1 answer
  • A pressure vessel that has a volume of 10m3 is used to store high-pressure air for operating a supersonic wind tunnel. If the ai
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!