Answer:

Explanation:
Mass of the cable car, m = 5800 kg
It goes 260 m up a hill, along a slope of 
Therefore vertical elevation of the car = 
Now, when you get into the cable car, it's velocity is zero, that is, initial kinetic energy is zero (since K.E. =
). Similarly as the car reaches the top, it halts and hence final kinetic energy is zero.
Therefore the only possible change in the cable car system is the change in it's gravitational potential energy.
Hence, total change in energy = mgh = 
where, g = acceleration due to gravity
h = height/vertical elevation
Answer:
1.36
Explanation:
= Index of refraction of air = 1
= Index of refraction of plastic = ?
i = angle of incidence in air = 32.0° deg
r = angle of refraction in plastic = 23.0° deg
Using Snell's law
Sini =
Sinr
(1) SIn32.0 =
Sin23.0
= 1.36
1) weight of the box: 980 N
The weight of the box is given by:

where m=100.0 kg is the mass of the box, and
is the acceleration due to gravity. Substituting in the formula, we find

2) Normal force: 630 N
The magnitude of the normal force is equal to the component of the weight which is perpendicular to the ramp, which is given by

where W is the weight of the box, calculated in the previous step, and
is the angle of the ramp. Substituting, we find

3) Acceleration: 
The acceleration of the box along the ramp is equal to the component of the acceleration of gravity parallel to the ramp, which is given by

Substituting, we find

Answer:
The moon region
Explanation:
This is because there is little to no gravity on the moon. That is where the astronaut would feel the lightest.
Answer:
ball clears the net
Explanation:
= initial speed of launch of the ball = 20 ms^{-1}
= angle of launch = 5 deg
Consider the motion of the ball along the horizontal direction
= initial velocity = 
= time of travel
= horizontal displacement of the ball to reach the net = 7 m
Since there is no acceleration along the horizontal direction, we have
Eq-1
Consider the motion of the ball along the vertical direction
= initial velocity = 
= time of travel
= Initial position of the ball at the time of launch = 2 m
= Final position of the ball at time "t"
= acceleration in down direction = - 9.8 ms⁻²
Along the vertical direction , position at any time is given as

Since Y > 1 m
hence the ball clears the net