Answer:

Step-by-step explanation:
-For a known standard deviation, the sample size for a desired margin of error is calculated using the formula:

Where:
is the standard deviation
is the desired margin of error.
We substitute our given values to calculate the sample size:

Hence, the smallest desired sample size is 23
$200 without the discount and he payed $136.
100 tickets were sold.
The total amount of the tickets sold is = 5 * 100 = $500.
First prize given = $100
Second prize worth = $20 * 5 = $100
Total worth of prize + $100 + $100 = $200.
Net amount of tickets sold = $500 - $200 = $300
Expected price of each ticket sold = $300/100 = 3.
Therefore, the real price of each ticket sold is $3.
First of all, a bit of theory: since the area of a square is given by

where s is the length of the square. So, if we invert this function we have
.
Moreover, the diagonal of a square cuts the square in two isosceles right triangles, whose legs are the sides, so the diagonal is the hypothenuse and it can be found by

So, the diagonal is the side length, multiplied by the square root of 2.
With that being said, your function could be something like this:
double diagonalFromArea(double area) {
double side = Math.sqrt(area);
double diagonal = side * Math.sqrt(2);
return diagonal;
}