The correct reaction equation is:

Answer:
b) 1 mole of water is produced for every mole of carbon dioxide produced.
Explanation: <u>CONVERT EVERYTHING TO MOLES OR VOLUME, THEN COMPARE IT WITH THE COMPOUND'S STOICHIOMETRY IN CHEMICAL EQUATION.</u>
a) <u>22.4 L of
gas</u> is produced only when <u>
L of
</u> is reacted with 22.4 L of
. So it is wrong.
b) Since in the chemical equation the stoichiometric coefficient of
and
are same so the number of moles or volume of each of them will be same whatever the amount of reactants taken. <u>Therefore it is correct option.</u>
c)
molecules is equal 1 mole of
if produced then 3 moles of
is required, which is not given in the option. So it is wrong.
d) 54 g of water or 3 moles of
(<em>Molecular Weight of water is 18 g</em>) is produced when 3 moles of
is used but in this option only one mole of
is given. So it is wrong.
Answer:
CO
Explanation:
From Graham's law, time taken to diffuse is directly proportional to the molecular mass of the gases. For two different gases.
t1/t2=√m1/m2
Since gas 1 diffuse 1.25 times as slowly as gas 2 and gas 1 is CO2 with m as 44g
1.25/1=√44/m2
Therefore m2=28g CO
Answer: Option (e) is the correct answer.
Explanation:
A bond that is formed when an electron is transferred from one atom to another results in the formation of an ionic bond.
For example, NaBr will be an ionic compound as there is transfer of electron from Na to Br.
Whereas a bond that is formed by sharing of electrons is known as a covalent bond.
For example,
will be a covalent compound as there is sharing of electron between carbon and bromine atom.
Also, when electrons are shared between the combining atoms and there is large difference in electronegativity of these atoms then partial charges develop on these atoms. As a result, it forms a polar covalent bond.
For example, in a HBr compound there is sharing of electrons between H and Br. Also, due to difference in electronegativity there will be partial positive charge on H and partial negative charge on Br.
Thus, we can conclude that out of the given options HBr is the only compound that has polar covalent bonds.
Answer:
k= 1.925×10^-4 s^-1
1.2 ×10^20 atoms/s
Explanation:
From the information provided;
t1/2=Half life= 1.00 hour or 3600 seconds
Then;
t1/2= 0.693/k
Where k= rate constant
k= 0.693/t1/2 = 0.693/3600
k= 1.925×10^-4 s^-1
Since 1 mole of the nuclide contains 6.02×10^23 atoms
Rate of decay= rate constant × number of atoms
Rate of decay = 1.925×10^-4 s^-1 ×6.02×10^23 atoms
Rate of decay= 1.2 ×10^20 atoms/s
Answer:
Explanation:Since the compound X has no net-dipole moment so we can ascertain that this compound is not associated with any polarity.
hence the compound must be overall non-polar. The net dipole moment of compound is zero means that the vector sum of individual dipoles are zero and hence the two individual bond dipoles associated with C-Cl bond must be oriented in the opposite directions with respect to each other.]
So we can propose that compound X must be trans alkene as only in trans compounds the individual bond dipoles cancel each other.
If one isomer of the alkene is trans then the other two isomers may be cis .
Since the two alkenes give the same molecular formula on hydrogenation which means they are quite similar and only slightly different.
The two possibility of cis structures are possible:
in the first way it is possible the one carbon has two chlorine substituents and the carbon has two hydrogens.
Or the other way could be that two chlorine atoms are present on the two carbon atoms in cis manner that is on the same side and two hydrogens are also present on the different carbon atoms in the same manner.
Kindly refer the attachments for the structure of compounds: