Note necessary facts about isosceles triangle ABC:
- The median CD drawn to the base AB is also an altitude to tha base in isosceles triangle (CD⊥AB). This gives you that triangles ACD and BCD are congruent right triangles with hypotenuses AC and BC, respectively.
- The legs AB and BC of isosceles triangle ABC are congruent, AC=BC.
- Angles at the base AB are congruent, m∠A=m∠B=30°.
1. Consider right triangle ACD. The adjacent angle to the leg AD is 30°, so the hypotenuse AC is twice the opposite leg CD to the angle A.
AC=2CD.
2. Consider right triangle BCD. The adjacent angle to the leg BD is 30°, so the hypotenuse BC is twice the opposite leg CD to the angle B.
BC=2CD.
3. Find the perimeters of triangles ACD, BCD and ABC:



4. If sum of the perimeters of △ACD and △BCD is 20 cm more than the perimeter of △ABC, then

5. Since AC=BC=2CD, then the legs AC and BC of isosceles triangles have length 20 cm.
Answer: 20 cm.
I think the points given here are plotted linearly:
FGHI. in this case, we can tell that FG + GH + HI = FI. substituting to the expression devised, 2 units + GH + 1 unit = 7 units. This is equal to 3 units + GH = 7 units. GH is then equal to 4 units.
Let the no. Of boys=x and that of girls=y.
The total no. Of students = x+y .
As given by statement the no. Of boys=x={(x+y)/3} + 5
This implies that
X=(x+y+15)/3
Also we know that x/y = 2/3 therefore
From this equation we get x=2y/3 and y=3x/2
By method of substitution we get
X=(x+3x/2+15)/3
•x=(15x+90)/2
•2x=15x+90
•-13x=90
X= -90/13
Now. Y= 3x/2=-270/26
Therefore total
no. Of students= -270/26+(-90/13)
•no. Of students= -450/26
According to me this is an imaginary question i mean how can their be a negative person
Answer:
736 N
Step-by-step explanation:
The dimensions of the rectangular tile are:
Length = 2.3m
Width = 1.6m
The pressure exerted on a surface is given by the formula

where
p is the pressure
F is the force exerted
A is the area on which the force is exerted
In this problem, we have:
is the maximum pressure that the tile is able to sustain
A is the area of the tile, which can be calculated as the product between length and width, so:

Re-arranging the formula for F, we can find the maximum force that can be safely applied to the tile:
