Answer:
The correct options are:
1) Pure chemical substance
2) Element.
Explanation:
each of the term is explained below:
1) <u>Mixture: </u> Since tungsten is an element in periodic table thus it is not a mixture.
2) False by definition of mixture.
3) false by definition of mixture.
4) <u>Solution:</u> Tungsten in a filament is in solid form hence solution is incorrect.
5) Since it is given in the question itself that the sample is pure hence option 'E' is correct as chemical substance is a pure substance that has a homogeneous composition and the sample in the question is given as pure.
6) <u>Compound:</u> By definition of compound it is formed by mixing 2 or more elements but since tungsten is an element that occurs independently in nature hence it is not a compound.
7) Tungsten is a element in the periodic table with atomic number 74.
Answer is: 6.022·10²² molecules of glucose.
c(glucose) = 100 mM.
c(glucose) = 100 · 10⁻³ mol/L.
c(glucose) = 0.1 mol/L; concentration of glucose solution.
V(glucose) = 1 L; volume of glucose solution.
n(glucose) = c(glucose) · V(glucose).
n(glucose) = 0.1 mol/L · 1 L.
n(glucose) = 0.1 mol; amount of substance.
N(glucose) = n(glucose) · Na (Avogadro constant).
N(glucose) = 0.1 mol · 6.022·10²³ 1/mol.
N(glucose) = 6.022·10²².
The density of a substance can simply be calculated by
dividing the mass by the volume:
density = mass / volume
Therefore calculating for the density since mass and volume
are given:
density = 46.0 g / 34.6 mL
density = 1.33 g / mL
Answer:
Lewis acid- Fe3+
Lewis base- water molecule
Explanation:
Acids and bases have been defined in diverse ways. There have been definitions put forward by Arrhenius, Brownstead and Lowry as well as Lewis. Each definition his useful in its own way.
Lewis acids are lone pair acceptors such as metal ions. This implies that in the particular instance of this reaction, Fe3+ is the lewis acid.
Similarly, a Lewis base is a lone pair donor, all ligands are lone pair donors since they donate one or more lone pairs of electrons to Lewis acids. In the particular instance of this reaction, the Lewis base is the water molecule.
Answer:
The equation for the reaction of one sodium bicarbonate ( NaHCO3 ) molecule with one citric acid (C6H8O7) molecule is the following:
Sodium Bicarbonate + Citric Acid ⇒ Water + Carbon Dioxide + Sodium Citrate
NaHCO3 + C6H8O7 ⇒ 3 CO2 + 3 H2O + Na3C6H5O7
Explanation:
The reaction is in balance, that is, the whole H2CO3 is not finished, but a little bit of this acid is left in the solution. Therefore, when sodium bicarbonate is added to the solution with citric acid, sodium citrate salt (C6H5O7Na3) and carbonic acid (H2CO3) are formed, which is rapidly broken down into water (H2O) and carbonic oxide (CO2).
C6H8O7 + NaHCO3 ⇒ C6H5O7Na3 + 3 H2CO3
C6H5O7Na3 + 3 H2CO3 ⇔ C6H5O7Na3 + 3 H2O + 3 CO2