Answer: the answer is option (D). k[P]²[Q]
Explanation:
first of all, let us consider the reaction from the question;
2P + Q → 2R + S
and the reaction mechanism for the above reaction given thus,
P + P ⇄ T (fast)
Q + T → R + U (slow)
U → R + S (fast)
we would be applying the Rate law to determine the mechanism.
The mechanism above is a three step process where the slowest step seen is the rate determining step. From this, we can see that this slow step involves an intermediate T as reactant and is expressed in terms of a starting substance P.
It is important to understand that laws based on experiment do not allow for intermediate concentration.
The mechanism steps for the reactions in the question are given below when we add them by cancelling the intermediates on the opposite side of the equations then we get the overall reaction equation.
adding this steps gives a final overall reaction reaction.
2P + Q ------------˃ 2R + S
Thus the rate equation is given as
Rate (R) = K[P]²[Q]
cheers, i hope this helps
1L = 1000ml
1ml = 1cm^3
2.1L = 2100mL = 2100cm^3
The valence electrons are as follows for these groups of elements:
Halogen- SEVEN (halogens are group 7 elements that need one electron for the octet rule to be achieved)
Alkali Metals - ONE (these are group one elements that lose a single electron to form an octet and cation)
Alkaline Earth Metals - TWO (group two elements that lose two electrons to form 2+ cations)
Hybridization refers to the mixing of atomic orbitals in an atom. The number of hybrid orbitals needs to be equal to the number of orbitals that have involved in prior to mixing.
The isolated atoms cannot prevail in a hybridized state as the atom in an isolated state do not form any kind of bond with the other atom, due to which the atomic orbitals do not go through the process of hybridization.