Heat
gained in a system can be calculated by multiplying the given mass to the
specific heat capacity of the substance and the temperature difference. It is
expressed as follows:<span>
Heat = mC(T2-T1)</span>
1540 = 200.0 (C)(40 - 20)
<span>
<span>C = 0.385 J / g C</span></span>
<span><span>
</span></span>
<span><span>Hope this answers the question. Have a nice day.</span></span>
Answer:
Option (A) saturated and is at equilibrium with the solid KCl
Explanation:
A saturated solution is a solution which can not dissolve more solute in the solution.
From the question given above, we can see that the solution is saturated as it can not further dissolve any more KCl as some KCl is still visible in the flask.
Equilibrium is attained in a chemical reaction when there is no observable change in the reaction system with time. Now, observing the question given we can see that there is no change in flask as some KCl is still visible even after thorough shaking. This simply implies that the solution is in equilibrium with the KCl solid as no further dissolution occurs.
For the presence of ammonium ion, there is a need to add sodium hydroxide solution to the water and warm the mixture. Test any vapor that gets produced with damp red litmus paper. It should turn blue as ammonia gas is discharged, which is alkaline. The ionic equation for the reaction is:
NH₄⁺ + OH⁻ ⇒ NH₃ + H₂O
For the presence of phosphate ions, the addition of barium ions is done. The ionic equation is:
3Ba₂⁺ + 2PO4³⁻ ⇒ Ba₃ (PO₄)₂ (precipitate)
Answer:
In a favorable reaction, the free energy of the products is less than the free energy of the reactants.
Explanation:
The free energy of a system is the amount of a system's internal energy that is available to perform work. The different forms of free energy include Gibbs free energy and Helmholtz free energy.
In a system at constant temperature and pressure, the energy that can be converted into work or the amount of usable energy in that system is known as Gibbs free energy. In a system at constant temperature and volume, the energy that can be converted into work is known as Helmholtz free energy.
The change in free energy of a system is the maximum usable energy that is released or absorbed by a system when it goes from the initial state (i.e., all reactants) to the final state (i.e., all products).
In a chemical reaction, some bonds in the reactants are broken by absorbing energy and new bonds are formed in the products by releasing energy. As the reaction proceeds, the free energy of reactants is much greater than the products. As the products are formed, the concentration of reactants decreases and the difference in their free energy also decreases. This chemical reaction will occur until chemical equilibrium is achieved i.e., the free energy of the products and reactants is equal and the difference in their free energy is zero.
Ideal solutions obey Raoult's law, which states that:
P_i = x_i*(P_pure)_i
where
P_i is the partial pressure of component i above a solution
x_i is the mole fraction of component i in the solution
(P_pure)_i is the vapor pressure of pure component i
In this case,
P_benzene = 0.59 * 745 torr = 439.6 torr
P_toluene = (1-0.59) * 290 torr = 118.9 torr
The total vapor pressure above the solution is the sum of the vapor pressures of the individual components:
P_total = (439.6 + 118.9) torr = 558.5 torr
Assuming the gas phase also behaves ideally, the partial pressure of each gas in the vapor phase is proportional to its molar concentration, so the mole fraction of toluene in the vapor phase is:
118.9 torr/558.5 torr = 0.213