Answer:
-1.14
Step-by-step explanation:
The given information in statement is
mean=μ=69
standard deviation=σ=3.5
Let X be the Ishaan's exam score
X=65
The Z score can be computed as


z=-1.1429
z=-1.14 (rounded to two decimal places).
Thus, the computed z-score for Ishaan's exam grade is -1.14.
(a) 0.059582148 probability of exactly 3 defective out of 20
(b) 0.98598125 probability that at least 5 need to be tested to find 2 defective.
(a) For exactly 3 defective computers, we need to find the calculate the probability of 3 defective computers with 17 good computers, and then multiply by the number of ways we could arrange those computers. So
0.05^3 * (1 - 0.05)^(20-3) * 20! / (3!(20-3)!)
= 0.05^3 * 0.95^17 * 20! / (3!17!)
= 0.05^3 * 0.95^17 * 20*19*18*17! / (3!17!)
= 0.05^3 * 0.95^17 * 20*19*18 / (1*2*3)
= 0.05^3 * 0.95^17 * 20*19*(2*3*3) / (2*3)
= 0.05^3 * 0.95^17 * 20*19*3
= 0.000125* 0.418120335 * 1140
= 0.059582148
(b) For this problem, let's recast the problem into "What's the probability of having only 0 or 1 defective computers out of 4?" After all, if at most 1 defective computers have been found, then a fifth computer would need to be tested in order to attempt to find another defective computer. So the probability of getting 0 defective computers out of 4 is (1-0.05)^4 = 0.95^4 = 0.81450625.
The probability of getting exactly 1 defective computer out of 4 is 0.05*(1-0.05)^3*4!/(1!(4-1)!)
= 0.05*0.95^3*24/(1!3!)
= 0.05*0.857375*24/6
= 0.171475
So the probability of getting only 0 or 1 defective computers out of the 1st 4 is 0.81450625 + 0.171475 = 0.98598125 which is also the probability that at least 5 computers need to be tested.
Because the ratio of yellow to blue can be expressed as 5/3, you would solve the equation 5/3= 2/x. To solve, you would get x alone by cross multiplying and getting 5x=6. Divide both sides by 5 and get 6/5 or 1 and 1/5 cans of blue paint
Answer:
Step-by-step explanation:
a) Sample statistics are used to estimate population value. Since 48% is a sample proportion, therefore, it is a sample statistic.
b) For 95% confidence level, z* = 1.96.
\hat{p}\pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}= 0.61\pm 0.61\sqrt{\frac{0.61(1-0.61)}{1578}}=0.61\pm 0.024 \ or (0.586, 0.634).
We are 95% confident that the true proportion of US residents who think marijuana should be made legal lies between 58.6% and 63.4%.
c)
\\np=1578(0.61)=962.58
\\n(1-p)=1578(1-0.61)=615.42
Since both np and n(1-p), are at least 10, the normal model is a good approximation for these data.
d) As the lower limit of confidence interval is less than 0.5, less than 50% population is also a plausible value of true proportion. This means the statement "Majority of Americans think marijuana should be legalized" is not justified.
Answer:
Third option: 
Step-by-step explanation:
<h3><em> The correct form of the exercise is: "The point-slope form of the equation of a line that passes through points (8, 4) and (0, 2) is

. What is the slope-intercept form of the equation for this line?"</em></h3><h3><em /></h3>
<em> </em>The equation of the line in Slope-Intercept form is:

Where "m" is the slope and "b" is the y-intercept.
Given the equation of the line in Point-Slope form:

You need to solve for "y" in order to write the given equation of the line in Slope Intercept form.
Then, this is:

You can identify that the slope "m" is:

And the y-interecept "b" is:
