Let's first write each step of the procedure:
Step 1:
group the x terms together and the terms and together, and move the constant term to the other side of the equation:
x² + 12x + y² + 2y = 1
Step 2:
determine (b ÷ 2) 2 for the x and y terms.
(12 ÷ 2) 2 = 36
and
(2 ÷ 2) 2 = 1
Step 3:
add the values to both sides of the equation.
x2 + 12x + 36 + y2 + 2y + 1 = 1 + 36 + 1
Step 4:
write each trinomial to binomial squared, and simplify the right side.
(x + 6) 2 + (y + 1) 2 = 38
Answer:
the last step is:
(x + 6) 2 + (y + 1) 2 = 38
To find the time at which both balls are at the same height, set the equations equal to each other then solve for t.
h = -16t^2 + 56t
h = -16t^2 + 156t - 248
-16t^2 + 56t = -16t^2 + 156t - 248
You can cancel out the -16t^2's to get
56t = 156t - 248
=> 0 = 100t - 248
=> 248 = 100t
=> 2.48 = t
Using this time value, plug into either equation to find the height.
h = 16(2.48)^2 + 56(2.48)
Final answer:
h = 40.4736
Hope I helped :)
If the total of cherry or grape is 60/100, then 60 (total of grape and cherry)-25 (cherry)= 35 (grape)
So 35/100 grape fruit chews