Answer:
2x + 3 = 2 x plus 3 equals StartFraction one-half EndFraction left-parenthesis 4 x plus 2 right-parenthesis plus 2.(4x + 2) + 2
Answer:
<u>Option B</u>
Step-by-step explanation:
The question is as following:

Step Work Justification
1 2x + 6x − 4 = 12
2 8x − 4 = 12
3 8x = 16
4 x = 2
Which of the following has all of the correct justifications Wyatt used to solve this equation?
A. Distributive property. 2. Combine like terms. 3. Addition property of equality. 4. Division property of equality.
B. Multiplication property of equality. 2. Combine like terms. 3. Addition property of equality. 4. Division property of equality.
C. Distributive property. 2. Combine like terms. 3. Subtraction property of equality. 4. Division property of equality.
D. Multiplication property of equality. 2. Combine like terms. 3. Subtraction property of equality. 4. Division property of equality
<u />
<u>The answer:</u>
Step Work Justification
multiply both sides by 2
1) 2x + 6x − 4 = 12 ⇒ {Multiplication property of equality}
{Combine like terms}
2) 8x − 4 = 12 ⇒
Adding 4 both sides
3) 8x = 16 ⇒ {Addition property of equality}
divide both sides by 8
4) x = 2 ⇒ {Division property of equality}
The answer is option B
(B) Multiplication property of equality. 2. Combine like terms. 3. Addition property of equality. 4. Division property of equality.
Remmber
(a/b)/(c/d)=(a/b)(d/c)=(ad)/(bc)
conver to improper
4 and 1/5=20/5+1/5=21/5
2 and 1/3=6/3+1/3=7/3
(21/5)/(7/3)=(21/5)(3/7)=63/35=9/5=1 and 4/5
Answer:
Step-by-step explanation:
The side of the square = 3^2/7
Use the law of exponents . If the power is a fraction, that means it is
3^2/7 = 3^2 x 1/7 = 7√9
To find the area you multiply this by itself.
This gives you 1.87...
Hope this helps
Answer: 23 y 24 ( ó -23 y -24)
Step-by-step explanation:
Dos números consecutivos se escriben como:
n y (n + 1)
done n es un numero entero.
Entonces "El producto de dos números consecutivos es 552"
Se escribe como:
n*(n + 1) = 552
n^2 + n = 552
n^2 + n - 552 = 0
Tenemos una cuadrática, las posibles soluciones son obtenidas con la formula de Bhaskara.

Las dos soluciones son.
n = (-1 - 47)/2 = -48/2 = -24
n = (-1 + 47)/2 = 46/2 = 23
Si tomamos la primer solución, n = -24
Entonces los dos números consecutivos son:
n = -24
(n + 1) = -23
Si n = 23 entonces
n + 1 = 24
Lo cual tiene sentido, por que lo único que cambia son los signos, los cuales se cancelarían en la multiplicación.