To help you I need to assume a wavelength and then calculate the momentum.
The momentum equation for photons is:
p = h / λ , this is the division of Plank's constant by the wavelength.
Assuming λ = 656 nm = 656 * 10 ^ - 9 m, which is the wavelength calcuated in a previous problem, you get:
p = (6.63 * 10 ^-34 ) / (656 * 10 ^ -9) kg * m/s
p = 1.01067 * 10^ - 27 kg*m/s which must be rounded to three significant figures.
With that, p = 1.01 * 10 ^ -27 kg*m/s
The answers are rounded to only 2 significan figures, so our number rounded to 2 significan figures is 1.0 * 10 ^ - 27 kg*m/s
So, assuming the wavelength λ = 656 nm, the answer is the first option: 1.0*10^-27 kg*m/s.
Answer:
a) 2.5m/s
b) 0.91m/s
c) 0m/s
Explanation:
Average velocity can be said to be the ratio of the displacement with respect to time.
Average speed on the other hand is the ratio of distance in relation to time
Thus, to get the average velocity for the first half of the swim
V(average) = displacement of first trip/time taken on the trip
V(average) = 50/20
V(average) = 2.5m/s
Average velocity for the second half of the swim will be calculated in like manner, thus,
V(average) = 50/55
V(average) = 0.91m/s
Average velocity for the round trip will then be
V(average) = 0/75, [50+25]
V(average) = 0m/s
Answer:
Explanation:
Suppose the distance between the two cities is D and the velocity in calm weather is V . The total time taken in two way travel is given by
Total distance / velocity
= 2 D / V
Suppose velocity of wind is v . Then in one way the velocity of airplane will become V + v and in the return trip its velocity will be V - v
Total time taken
= 
= 
= 
= 
= The denominator contains a factor

which is less than one so time calculated will be more than
2D / V
Hence in the second case time taken will be more .
Answer:

Explanation:
The general equation for position of Simple harmonic motion is given as:
........(1)
where,
x = Position of the wave
A = Amplitude of the wave
ω = Angular velocity
t = time
In this case, the amplitude is just half the range,
thus,
(Given range = 3cm)
A = 1.5 cm
Now, The angular velocity is given as:

Where, T = time period of the wave =0.27s (given)

or

so, at time t = 55 s, the equation (1) becomes as:

on solving the above equation we get,

here the negative sign depicts the position in the opposite direction of +x