The k is the proportionality constant of the reaction. Graphically, this is the slope of the graph. Since the graph is linear, then there is only 1 value of k. To calculate this, choose two random points in the line. Suppose we use (0.15,10) and (0.30,20), calculate for the slope.
Slope = k = (10 - 20)/(0.15 - 0.30) = 66.67 mL CO₂/g CaCO₃
Answer:
the answer is 0.4588162459
Explanation:
1 mole = 0.010195916576195
= 45 ×"
From the question you will find that:
one capsule of tamiflu is obtained from 2.6 g of star anise.
1 capsule = 2.6 g tamiflu
? capsules = 155 g tamiflu
by cross multiplication =

= 59 capsules
Answer: 17 years
Explanation:
Expression for rate law for first order kinetics for radioactive substance is given by:

where,
k = rate constant
t = age of sample
a = let initial amount of the reactant
a - x = amount left after decay process
a) for completion of half life:
Half life is the amount of time taken by a radioactive material to decay to half of its original value.


b) for 8900 g of the mass of the sample to reach 7700 grams


Thus it will take 17 years
In a chemical reaction,
the limiting reagent is the chemical being used up while the excess reactant is
the chemical left after the reaction process.
Before calculating the limiting
and excess reactant, it is important to balance the equation first by stoichiometry.
C25N3H30Cl + NaOH = C25N3H30OH + NaCl
Since the reaction is already balanced, we can now identify which
is the limiting and excess reagent.
First, we need to determine the number of moles of each chemical
in the equation. This is crucial for determining the limiting and excess reagent.
<span>Assuming that there is the
same amount of solution X for each reactant</span>
1.0 M NaOH ( X ) = 1.0
moles NaOH
1.00 x 10-5 M C25N3H30Cl
( X ) = 1.00 x 10-5 moles C25N3H30Cl
<span>The result showed that the
crystal violet has lesser amount than NaOH. Thus, the limiting reactant in this
chemical reaction is crystal violet and the excess reactant is NaOH.</span>