Given two electrons with charge of 1.5x10^-10 m
The electostatic force between them is determined by this formula:
F = kq1q2/r^2
where
k = 9x10^9
q1 = q2 = 1.5x10^-10
r = 2.82x10^-15
F = 9x10^9 * (1.5x10^-10)^2 / 2.82x10^-15
= 71808.51
Answer : The partial pressure of nitrogen gas is, 2.94 atm
Explanation:
According top the Henry's Law, the concentration of a gas in a liquid is directly proportional to the partial pressure of the gas.


is Henry's constant.
or,

where,
= initial concentration of gas = 
= final concentration of gas = 
= initial partial pressure of gas = 0.78 atm
= final partial pressure of gas = ?
Now put all the given values in the above formula, we get the final partial pressure of the gas.


Therefore, the partial pressure of nitrogen gas is, 2.94 atm
Answer: 3 <span>moles of water would be produced in present case.
</span>
Reason:
Reaction involved in present case is:
<span> C5H12 + 8O2 </span>→<span> 5CO2 + 6H2O
In above reaction, 1 mole of C5H12 reacts with 8 moles of oxygen to give 6 moles of water.
Thus, 4 moles of oxygen will react with 0.5 mole of C5H12, to generate 3 moles of H2O.</span>
Answer:
The specific heat capacity of liquid and the het of vaporization is used.
.
Explanation:
Step 1: Data given
A substance at temperature 2°C.
The substance has a melting point of −10°C and a boiling point of 155°C.
The initial temperature is 2°C which is between the melting point (-10°C) and the boiling point (155°C). At 2°C, the substance is liquid.
At 155°C, the substance changes from liquid to gas.
To calculate the heat gained for the change of 2°C liquid to 155°C liquid, specific heat capacity of the liquid (C) is needed.
To calculate the heat gained for the change of liquid to 155°C gas, heat of vaporization (D) is needed.
The <u>specific heat of the solid is not used</u> because the substance is changed from liquid to gas. it doesn't come in the state of solid.
<u>Heat of fusion is not used</u>, because it's used when there is a change from its state from a solid to a liquid,
<u>The specific heat capacity of the gas is not used</u>, because the substance only formes gas after reaching 155 °C