I will solve this question assuming the reaction equation look like this:
<span>MnO2 + 4 HCl ---> MnCl2 + Cl2 + 2 H2O.
</span>
For every one molecule of MnO2 used, there will be one molecule of Cl2 formed. If the molecular mass of MnO2 is 87g/mol and molecular mass of Cl2 is <span> 73.0 g/mol, the mass of MnO2 needed would be:
Cl mass/Cl molecular mass * MnO2 molecular mass=
25g/ (73g/mol) * (87g/mol) * 1/1= 29.8 grams</span>
If he was 30.8% too low, it means that he was at 69.2% of the boiling point needed. So 50o C is 69.2% of total.
In order to know what 100% is, you can divide the number by it's percentage and then multiply it by a hundred.
So: 50/30.8=1.623
1.623*100=162.3
So the correct boiling point of the liquid he was working with in the lab is 162.3 oC
<span>the pH of a 0.050 M triethylamine, is 11.70
</span>
For triehtylamine,

, the reaction will be

and we know, pH = -log[H+] and pOH = -log[OH-]
Also, pOH + pH = 14
Now, the Kb value = 5.3 x 10^-4
And
![kb = \frac{( [( C_{2}H_{5})_{3}NH^{+} ]* OH^{-} )}{[( C_{2}H_{5})_{3}N]}](https://tex.z-dn.net/?f=kb%20%3D%20%20%5Cfrac%7B%28%20%5B%28%20C_%7B2%7DH_%7B5%7D%29_%7B3%7DNH%5E%7B%2B%7D%20%5D%2A%20%20OH%5E%7B-%7D%20%29%7D%7B%5B%28%20C_%7B2%7DH_%7B5%7D%29_%7B3%7DN%5D%7D%20)
thus, [OH-] =(5.3 ^ 10-4) ^2 / 0.050
=0.00516 M
Thus, pOH = 2.30
pH = 14 - pOH = 11.7