Answer:
A titration
Explanation:
A common example of a titration is when we have an acid of unknown concentration, so we add a known volume of a base of known concentration. This process lets us determine the concentration of the acid.
By definition, a titration is a quantitative analysis, as we determine how much of an analyte is there in a sample. However, <u>there are quantitative analyzes which are not titrations</u>. This is why the most appropiate answer is<em> a titration</em>.
Water is the only one of these that would work by process of elimination.
Answer:
The answer to your question is below:
Explanation:
Having exactly the same data as the previous experiment I think that having the same data as the previous experiment is extremely important but not the most important, for me is the second most important.
Using the same procedure and variables as the previous experiment For me, this is the most importan thing when a scientist is designing an experiment, because if he or she follow exactly the same procedure and variables, then the results will be very close.
Conducting an experiment similar to the previous experiment This characteristic is important but not the most important.
Using the same laboratory that was used in the previous experiment It is not important the laboratory, if the procedure and variables are the same, your experiment must give the same results in whatever laboratory.
a scale-model mound made of the same materials that make the real hill
2.10 x 10^-10 M. Ans
pH + pOH = 14
Where, pOH is the power of hydroxide ion concentration and pH is the power of concetration of the H+ ion.
Now, pOH = 14 - 4.32
= 9.68
Now, the concentration of [H+] is 10-7 M, then pH is 7 and for [OH-] = 10-7 M, the pOH is also 7.
Now, pOH = -log[OH-]
[OH-] = 10^- pOH
= 10^-9.68
= 2.10 x 10^-10 M