The answer is a, b, and e.
Answer:
The answer to your question is 8 h
Step-by-step explanation:
Data
length of the ladder = 200 cm
distance between each rung = 20 cm
rate = 10 cm/h
fifth rung = ?
Process
1.- Calculate the total distance the tide must rise
distance = 20 cm x 4
= 80 cm because the first rung touches the water
2.- Calculate the time
rate = distance / time
-Solve for time
time = distance / rate
-Substitution
time = 80 cm / 10cm/h
-result
time = 8 h
A) Plan A requires for a percentage increase of a number of students. This means that year after year the number of new students will increase. Plan B requires for a constant number of new students each year. This means that year after year the percentage increase would get smaller.
B) To solve this problem we will use formula for a growth of population:

Where:
final = final number of students
initial = initial number of students
percentage = requested percentage increase
t = number of years
We can insert numbers and solve for t:

For Plan B we can use simple formula
increase = 120
increase per year = 20
number of years = increase / (increase per year) = 120 / 20 = 6 years
Plan B is better to double the <span>enrollment.
C)We use same steps as in B) to solve this.
</span>

For Plan B we can use simple formula
increase = 240
increase per year = 20
number of years = increase / (increase per year) = 240 / 20 = 12 years
Plan A is better to triple the enrollment.
Answer:
Option 1: It is better for him to be paid per catch, starting with 1 cent and doubling with each catch up to 110
Explanation:
If Jason were to be paid per catch given that he makes a total of 110 catches for the 2017 season in his new contract, he would make a total of :
0.01 × 2^109 = $6.4903711e+30(calculator result, means 6 then 30 digits after)
Therefore it is better for Jason to be paid per catch and not a flat fee of $2000000