answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gnesinka [82]
2 years ago
11

A scientist carried out several different procedures, each of which caused a change in matter. Select each procedure that is lik

ely a chemical change.
{1}Salt crystals were crushed into a fine powder.
{2}Bubbles were produced when iron was placed in acid.
{3}Two liquids were combined, and a solid appeared.
{4}A piece of metal melted when it was heated.
{5}A white substance turned blue when water was added.
Chemistry
1 answer:
Alexandra [31]2 years ago
4 0

Answer: Option (2), (3) and (5).

Explanation:

Chemical change: It is a chemical reaction in which arrangement of atoms of one or more than one substance changes to give new substances as a product.Chemical change can be in form of : color change, formation of precipitate, formation of bubbles.

In option (2), bubbles were produced when iron was placed in acid which means gas was released on adding iron to acid.Yes, it is a chemical change.

In option (3), solid that is precipitate is obtained as a product from the reaction between two liquids which means that change in arrangement of atom had taken place.Hence, a chemical change.

In option (5), white substance turned blue when water was added. Color of white solid changes to blue which means that chemical change has taken place.

So, option are (2), (3) and (5) are examples of chemical changes.

You might be interested in
jan is holding an ice cube. what causes the ice to melt? thermal energy from the ice is transferred to the air. thermal energy f
loris [4]

Answer: Ice is melting due to the transfer of thermal energy from Jan's hand to ice.

Explanation: The melting of ice is a physical change and is happening when the thermal energy from Jan's hand is transferred to ice. Due to this energy transfer, the particles of ice starts to move faster and hence, making the ice melt.

In this, the physical state of ice is changing from solid to liquid state.

H_2O(s)\rightleftharpoons H_2O(l)

8 0
2 years ago
Read 2 more answers
A mysterious white powder could be powdered sugar (C12H22O11), cocaine (C17H21NO4), codeine (C18H21NO3), norfenefrine (C8H11NO2)
rodikova [14]

Norfenefrine (C₈H₁₁NO₂).

<h3>Further explanation</h3>

We will solve a case related to one of the colligative properties, namely freezing point depression.

The freezing point of the solution is the temperature at which the solution begins to freeze. The difference between the freezing point of the solvent and the freezing point of the solution is called freezing point depression.

\boxed{ \ \Delta T_f = T_f(solvent) - T_f(solution) \ } \rightarrow \boxed{ \ \Delta T_f = K_f \times molality \ }

<u>Given:</u>

A mysterious white powder could be,

  • powdered sugar (C₁₂H₂₂O₁₁) with a molar mass of 342.30 g/moles,
  • cocaine (C₁₇H₂₁NO₄) with a molar mass of 303.35 g/moles,
  • codeine (C₁₈H₂₁NO₃) with a molar mass of 299.36 g/moles,
  • norfenefrine (C₈H₁₁NO₂) with a molar mass of 153.18 g/moles, or
  • fructose (C₆H₁₂O₆) with a molar mass of 180.16 g/moles.

When 82 mg of the powder is dissolved in 1.50 mL of ethanol (density = 0.789 g/cm³, normal freezing point −114.6°C, Kf = 1.99°C/m), the freezing point is lowered to −115.5°C.

<u>Question: </u>What is the identity of the white powder?

<u>The Process:</u>

Let us identify the solute, the solvent, initial, and final temperatures.

  • The solute = the powder
  • The solvent = ethanol
  • The freezing point of the solvent = −114.6°C
  • The freezing point of the solution = −115.5°C

Prepare masses of solutes and solvents.

  • Mass of solute = 82 mg = 0.082 g
  • Mass of solvent = density x volume, i.e., \boxed{ \ 0.789 \ \frac{g}{cm^3} \times 1.50 \ cm^3 = 1.1835 \ g = 0.00118 \ kg  \ }

We must prepare the solvent mass unit in kg because the unit of molality is the mole of the solute divided by the mass of the solvent in kg.

The molality formula is as follows:

\boxed{ \ m = \frac{moles \ of \ solute}{kg \ of \ solvent} \ } \rightarrow \boxed{ \ m = \frac{mass \ of \ solute \ (g)}{molar \ mass \ of \ solute \times kg \ of \ solvent} \ }

Now we combine it with the formula of freezing point depression.

\boxed{ \ \Delta T_f =  K_f \times \frac{mass \ of \ solute \ (g)}{molar \ mass \ of \ solute \times kg \ of \ solvent} \ }

It is clear that we will determine the molar mass of the solute (denoted by Mr).

We enter all data into the formula.

\boxed{ \ -114.6^0C - (-115.5^0C) = 1.99 \frac{^0C}{m} \times \frac{0.082 \ g}{Mr \times 0.00118 \ kg} \ }

\boxed{ \ 0.9 = \frac{1.99 \times 0.082}{Mr \times 0.00118} \ }

\boxed{ \ Mr = \frac{0.16318}{0.9 \times 0.00118} \ }

We get \boxed{ \ Mr = 153.65 \ }

These results are very close to the molar mass of norfenefrine which is 153.18 g/mol. Thus the white powder is norfenefrine.

<h3>Learn more</h3>
  1. The molality and mole fraction of water brainly.com/question/10861444
  2. About the mass and density of ethylene glycol as an  antifreeze brainly.com/question/4053884
  3. About the solution as a homogeneous mixture  brainly.com/question/637791

Keywords: a mysterious white powder, sugar, cocaine, codeine, norfenefrine, fructose, the solute, the solvent, dissolved, ethanol, normal freezing point, the freezing point depression, the identity

7 0
2 years ago
Read 2 more answers
Room temperature is about 20 degrees Celsius. Explain how you could convert this temperature to kelvin. Use evidence from the fi
Taya2010 [7]

Answer:

293.15 K.

Explanation:

It is given that, the room temperature is 20 degrees Celsius.

We need to convert this temperature into kelvin.

The conversion from degrees Celsius to Kelvin is as follows :

T_k=T_c+273.15

We have, T_c=20^{\circ} C

So,

T_k=20+273.15\\\\T_k=293.15\ K

So, the room temperature is 293.15 kelvin.

8 0
2 years ago
Calculate the daily aluminum production of a 150,000 [A] aluminum cell that operates at a faradaic efficiency of 89%. The cell r
Gala2k [10]

Explanation:

It is known that in one day there are 24 hours. Hence, number of seconds in 24 hours are as follows.

                             24 \times 3600 sec

Hence, total charge passed daily is calculated as follows.

                      150,000 \times 24 \times 3600 sec

And, number of Faraday of charge is as follows.

                    \frac{150,000 \times 24 \times 3600 sec}{96500}

                     = 134300.52 F

The oxidation state of aluminium in Al_{2}O_{3} is +3.

                       Al^{3+} + 3e^{-} \rightarrow Al(s)

So, if we have to produce 1 mole of Al(s) we need 3 Faraday of charge.

Therefore, from 134300.52 F the moles of Al obtained with 89% efficiency is calculated as follows.

                \frac{134300.52 F}{3} \times \frac{89}{100}

                   = 39842.487 mol

or,               = 3.9842 \times 10^{4} mol

Molar mass of Al = 27 g/mol

Therefore, mass in gram will be calculated as follows.

            Mass in grams = 3.9842 \times 10^{4} mol \times 27

                                     = 107.57 \times 10^{4} g

                                     = 1075.7 kg/day

Thus, we can conclude that the daily aluminum production of given aluminium is 1075.7 kg/day.

8 0
2 years ago
One of the most important chemical reactions is the Haber process, in which N2 and H2 are converted to ammonia which is used in
Lera25 [3.4K]

Answer:

c) 22

Explanation:

Let's consider the following balanced equation.

N₂(g) + 3 H₂(g) ----> 2 NH₃(l)

According to the balanced equation, 34.0 g of NH₃ are produced by 1 mol of N₂. For 170 g of NH₃:

170gNH_{3}.\frac{1molN_{2}}{34.0gNH_{3}} =5.00molN_{2}

According to the balanced equation, 34.0 g of NH₃ are produced by 3 moles of H₂. For 170 g of NH₃:

170gNH_{3}.\frac{3molH_{2}}{34.0gNH_{3}} =15.0molH_{2}

The total gaseous moles before the reaction were 5.00 mol + 15.0 mol = 20.0 mol.

We can calculate the pressure (P) using the ideal gas equation.

P.V = n.R.T

where

V is the volume (50.0 L)

n is the number of moles (20.0 mol)

R is the ideal gas constant (0.08206atm.L/mol.K)

T is the absolute temperature (400.0 + 273.15 = 673.2K)

P=\frac{n.R.T}{V} =\frac{20.0mol\times (0.08206atm.L/mol.K)\times 673.2K ) }{50.0L} =22.0atm

7 0
2 years ago
Other questions:
  • Which property to put in which
    14·1 answer
  • Which indicator would be the best to use for a titration between 0.20 m hi with 0.10 m ba(oh)2? you will probably need to consul
    5·2 answers
  • When the reaction mixture is worked-up, it is first washed three times with 5% sodium bicarbonate, and then with a saturated nac
    7·1 answer
  • Nitrogen dioxide (NO2) cannot be obtained in a pure form in the gas phase because it exists as a mixture of NO2 and N2O4. At 16°
    14·1 answer
  • A solution contains one or more of the following ions: Ag + , Ca 2 + , and Co 2 + . Ag+, Ca2+, and Co2+. Lithium bromide is adde
    11·1 answer
  • A gas that has a volume of 28 liters, a temperature of 45C, And an unknown pressure has its volume increased to 34 liters and it
    8·1 answer
  • A paint machine dispenses dye into paint cans to create different shades of paint. The amount of dye dispensed into a can is kno
    13·1 answer
  • The structures of TeF4 and TeCl4 in the gas phase have been studied by electron diffraction (S. A. Shlykov, N. I. Giricheva, A.
    15·1 answer
  • A student places four identical cells into four different liquids. Over time which cell will look the smallest WXY or Z
    12·1 answer
  • A student in a chemistry laboratory has access to two acid solutions. The first one is 20% acid and the second solution is 45% a
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!