Answer:
Even-number fatty acids such as palmitate undergoes complete β-oxidation in the liver motochondria to CO₂ because the product, acetyl-CoA can enter the TCA cycle.
Oxidation of odd-number fatty acids such as undecanoic acid yields acetyl-CoA + propionyl-CoA in their last pass. Propionyl-CoA requires additional reactions including carboxylation in order to be able to enter the TCA cycle.
The reaction CO2 + propionyl-CoA ----> methylmalonyl-CoA is catalyzed by propionyl-CoA carboxylase, a biotin-containing enzyme, which is inhibited by avidin. Palmitate oxidation however, does not involve carboxylation.
Explanation:
Even-number fatty acids such as palmitate undergoes complete β-oxidation in the liver motochondria to CO₂ because their oxidation product, acetyl-CoA, can enter the TCA cycle where it is oxidized to CO₂.
Undecanoic acid is an odd-number fatty acid having 11 carbon atoms. Oxidation of odd-number fatty acids such as undecanoic acid yields a five -carbon fatty acyl substrate for their last pass through β-oxidation which is oxidized and cleaved into acetyl-CoA + propionyl-CoA. Propionyl-CoA requires additional reactions including carboxylation in order to be able to enter the TCA cycle. Since oxidation is occuring in a liver extract, CO₂ has to be externally sourced in order for the carboxylation of propionyl-CoA to proceed and thus resulting in comlete oxidation of undecanoic acid.
The reaction CO2 + propionyl-CoA ----> methylmalonyl-CoA is catalyzed by propionyl-CoA carboxylase, a biotin-containing enzyme. The role of biotin is to activate the CO₂ before its tranfer to the propionate moiety. The addition of the protein avidin prevents the complete oxidation of undecanoic acid by binding tightly to biotin, hence inhibiting the activation and transfer of CO₂ to propionate.
Palmitate oxidation however, does not involve carboxylation, hence addition of avidin has no effect on its oxidation.
Answer:
1.315x10⁻³M = [Ca²⁺]
Explanation:
Based in the reaction:
Ca₁₀(PO₄)₆(OH)₂(s) ⇄ 10Ca²⁺(aq) + 6PO₄³⁻(aq) + 2OH⁻(aq)
Solubility product, ksp, is defined as:
ksp = [Ca²⁺]¹⁰ [PO₄³⁻]⁶ [OH⁻]²
From 1 mole of hydroxyapatite are produced 10 moles of Ca²⁺ and 6 moles of PO₄³⁻. That means moles of PO₄³⁻ are:
6/10 Ca²⁺ = PO₄³⁻
Replacing in ksp formula:
ksp = [Ca²⁺]¹⁰ [0.6Ca²⁺]⁶ [OH⁻]²
As [OH⁻] is 2.50x10⁻⁶M and ksp is 2.34x10⁻⁵⁹:
2.34x10⁻⁵⁹ = [Ca²⁺]¹⁰ [0.6Ca²⁺]⁶ [2.50x10⁻⁶]²
3.744x10⁻⁴⁸ = 0.046656[Ca²⁺]¹⁶
<em />
<em>1.315x10⁻³M = [Ca²⁺]</em>
<em />
I hope it helps!
It would be 4 meters per second. With this you'd only have to take 180, ans divide 45 from it to finally get your answer! I hope all is well, and you end up passing. (:
Using the combined gas law, where PV/T = constant, we first solve for PV/T for the initial conditions: (4.50 atm)(36.0 mL)/(10.0 + 273.15 K) = 0.57213.
Remember to use absolute temperature.
For the final conditions: (3.50 atm)(85.0 mL)/T = 297.5/T
Since these must equal, 0.57213 = 297.5/T
T = 519.98 K
Subtracting 273.15 gives 246.83 degC.
Answer:
Upper F subscript 2 (g) plus upper C a (s) right arrow with delta above upper C a upper F subscript 2 (s).
Explanation:
This is a chemical reaction problem.
In expressing any chemical reaction, we need to understand that there are reactants and products.
- The reactants are the species on the left hand side that are combining.
- The products are the species on the right hand side that are formed.
- Every chemical reaction is obeys the law of conservation of matter i.e equal number of matter on both sides.
Using the statement of this problem, we can deduce that;
Reactants are Fluorine gas and Calcium metal
Product is Calcium Fluoride
Note: A metal is a solid(s) and powder is a solid(s). A gas is denoted as (g). They depict the state of the species reacting.
F₂
+ Ca
→ CaF₂
We can see that equal number of atoms are on both sides of the expression.