Answer:

Step-by-step explanation:
Starting with :
m g + r g = 2 H
extract "g" as a common factor on the left of the equal sign:
g (m + r) = 2 H
Now, in order to solve for "g" , divide both sides of the equal sign by the binomial (m + r):
g = (2 H )/(m + r)

645 rounded to the nearest 10 is 650, as 5 in the ones place rounds up.
Answer:
C) Both statements could be correct. RST could be the result of two translations of ABC. TSR could be the result of a reflection and a translation of ABC.
Step-by-step explanation:
When naming congruent shapes, the <u>orders of the congruent vertex letters need to be the same</u>.
Since these are isosceles triangles, the base angles are the same:
m∠R = m∠T = m∠A = m∠C
Therefore the congruency statement can be written two different ways.
ΔABC ≅ ΔRST
ΔABC ≅ ΔTSR
Both statements could be correct.
Choosing between B) and C):
To move ΔABC to where ΔRST or ΔTSR is, you could either:
i) Translate 6 units to the left, and translate 3 units down
ii) Reflect across the y-axis, and translate 3 units down
It can be the result of two translations or a reflection and a translation.
In the result, the base side RT is on the bottom of the shape, like side AC. If you rotated the shape, the base side would not be on the bottom. Therefore B) is incorrect.
Answer:
a. z = 2.00
Step-by-step explanation:
Hello!
The study variable is "Points per game of a high school team"
The hypothesis is that the average score per game is greater than before, so the parameter to test is the population mean (μ)
The hypothesis is:
H₀: μ ≤ 99
H₁: μ > 99
α: 0.01
There is no information about the variable distribution, I'll apply the Central Limit Theorem and approximate the sample mean (X[bar]) to normal since whether you use a Z or t-test, you need your variable to be at least approximately normal. Considering the sample size (n=36) I'd rather use a Z-test than a t-test.
The statistic value under the null hypothesis is:
Z= X[bar] - μ = 101 - 99 = 2
σ/√n 6/√36
I don't have σ, but since this is an approximation I can use the value of S instead.
I hope it helps!