Explanation:
Below is an attachment containing the solution.
Simply subtract the two velocities and divide by 8.1,

~~
I hope that helps you out!!
Any more questions, please feel free to ask me and I will gladly help you out!!
~Zoey
Answer
given,
mass of the person, m = 50 Kg
length of scaffold = 6 m
mass of scaffold, M= 70 Kg
distance of person standing from one end = 1.5 m
Tension in the vertical rope = ?
now equating all the vertical forces acting in the system.
T₁ + T₂ = m g + M g
T₁ + T₂ = 50 x 9.8 + 70 x 9.8
T₁ + T₂ = 1176...........(1)
system is equilibrium so, the moment along the system will also be zero.
taking moment about rope with tension T₂.
now,
T₁ x 6 - mg x (6-1.5) - M g x 3 = 0
'3 m' is used because the weight of the scaffold pass through center of gravity.
6 T₁ = 50 x 9.8 x 4.5 + 70 x 9.8 x 3
6 T₁ = 4263
T₁ = 710.5 N
from equation (1)
T₂ = 1176 - 710.5
T₂ = 465.5 N
hence, T₁ = 710.5 N and T₂ = 465.5 N
Answer:
L = mp*v₀*(ms*D) / (ms + mp)
Explanation:
Given info
ms = mass of the hockey stick
uis = 0 (initial speed of the hockey stick before the collision)
xis = D (initial position of center of mass of the hockey stick before the collision)
mp = mass of the puck
uip = v₀ (initial speed of the puck before the collision)
xip = 0 (initial position of center of mass of the puck before the collision)
If we apply
Ycm = (ms*xis + mp*xip) / (ms + mp)
⇒ Ycm = (ms*D + mp*0) / (ms + mp)
⇒ Ycm = (ms*D) / (ms + mp)
Now, we can apply the equation
L = m*v*R
where m = mp
v = v₀
R = Ycm
then we have
L = mp*v₀*(ms*D) / (ms + mp)
Answer:
The net force = 0
Explanation:
The given information includes;
The mass of the crate = 250 kg
The way the helicopter lifts the crate = Uniformly (constant rate (speed), no acceleration)
In order to pull the crate upwards, the helicopter has to provide a force equivalent to the weight of the crate keeping the helicopter on the ground.
The weight of the crate = The mass of the crate × The acceleration due gravity acting on the crate
The weight of the crate,
↓ = 250 kg × 9.81 m/s² = 2,452.5 N
The force the helicopter should provide to just lift the crate,
↑ = The weight of the crate = 2,452.5 N
The net force,
=
↑ -
↓ = 2,452.5 N - 2,452.5 N = 0
The net force = 0.