Answer:5.17 m/s
Explanation:
Given
let u be the speed at cliff initial point
range over cliff is 1.45 m
and range of projectile is given by


u=3.77 m/s
Conserving Energy

Kinetic energy=Kinetic energy +Potential energy gained
Let v be the initial velocity





Answer:
Explained
Explanation:
a) No, the keys were initially moving upward in the elevator only effects the initial velocity of the key and not the rate of change of velocity that is acceleration. So, the keys accelerate with the same acceleration as before.
b)Yes, keys will accelerate towards the floor faster if it is a constant speed than it is moving downward because if the elevator is accelerating downward, the downward change in velocity of the keys is at least partially matched by a downward change in the velocity of the of the elevator.
Answer:
Since the spring mass system will execute simple harmonic motion the position as a function of time can be written as
'A' is the amplitude = 6 inches (given)
is the natural frequency of the system
At equilibrium we have

Applying values we get

thus natural frequency equals

Thus the equation of motion becomes

At time t=0 since mass is at it's maximum position thus we have

Thus the position of mass at the given times is as follows
1) at

2) at

3) at

4) at

5) at

Answer:Thus, The magnetic field around a current-carrying wire is <u><em>directly</em></u> proportional to the current and <u><em>inversely</em></u> proportional to the distance from the wire. If the current triples while the distance doubles, the strength of the magnetic field increases by <u><em>one and half (1.5)</em></u> times.
Explanation:
Magnetic field around a long current carrying wire is given by

where B= magnetic field
permeability of free space
I= current in the long wire and
r= distance from the current carrying wire
Thus, The magnetic field around a current-carrying wire is <u><em>directly</em></u> proportional to the current and <u><em>inversely</em></u> proportional to the distance from the wire.
Now if I'=3I and r'=2r then magnetic field B' is given by

Thus If the current triples while the distance doubles, the strength of the magnetic field increases by <u><em>one and half (1.5)</em></u> times.
<span>If the net force acting on an object increases by 50 percent, then
the acceleration of the object will also increase by 50 percent.
This answer is not offered among the list of choices.
So the correct response is "D. none of the above"</span>