Answer:
E. CH₄ < CH₃Cl < CH₃OH < RbCl
Explanation:
The molecule with the stronger intermolecular forces will have the higher boiling point.
The order of strength of intermolecular forces (strongest first) is
- Ion-Ion
- Hydrogen bonding
- Dipole-dipole
- London dispersion
RbCl is a compound of a metal and a nonmetal. It is an ionic compound, so it has the highest boiling point.
CH₃Cl has a C-Cl polar covalent bond. It has dipole-dipole forces, so it has the second lowest boiling point.
CH₃OH has an O-H bond. It has hydrogen bonding, so it has the second highest boiling point.
CH₄ has nonpolar covalent C-H bonds. It has only nonpolar bonds, so the only attractive forces are London dispersion forces. It has the lowest boiling point.
Thus, the order of increasing boiling points is
CH₄ < CH₃Cl < CH₃OH < RbCl
Answer:
A. Yes, there is more than enough sodium carbonate.
Explanation:
Hello,
In this case, based on the given reaction which is:

By stoichiometry, one computes the grams of sodium carbonate that will neutralize 1,665 g of sulfuric acid as shown below:

Thus, the available mass is 2.0 kg so 0.2 kg are in excess, therefore: A. Yes, there is more than enough sodium carbonate.
Best regards.
Answer ;
-An element is a substance containing only one type of atom, for example; H2 or 02 (consisting of atoms that all have the same number of protons).
-Microscopic, single atom of that element
-Macroscopic, sample of that element large enough to weigh on a balance
- A substance that cannot be broken down chemically; e.g; sodium metal,
Explanation;
-An element is a substance whose atoms all have the same number of protons: another way of saying this is that all of a particular element's atoms have the same atomic number. Elements are chemically the simplest substances and hence cannot be broken down using chemical reactions.
-An element is uniquely determined by the number of protons in the nuclei of its atoms.
Answer:
0.3023 M
Explanation:
Let Picric acid = 
So,
+
⇄
+ 
The ICE table can be given as:
+
⇄
+ 
Initial: 0.52 0 0
Change: - x + x + x
Equilibrium: 0.52 - x + x + x
Given that;
acid dissociation constant (
) = 0.42
![K_a = \frac{[H_3O^+][Picric^-]}{H_{picric}}](https://tex.z-dn.net/?f=K_a%20%3D%20%5Cfrac%7B%5BH_3O%5E%2B%5D%5BPicric%5E-%5D%7D%7BH_%7Bpicric%7D%7D)
![0.42 = \frac{[x][x]}{0.52-x}}](https://tex.z-dn.net/?f=0.42%20%3D%20%5Cfrac%7B%5Bx%5D%5Bx%5D%7D%7B0.52-x%7D%7D)
![0.42 = \frac{[x]^2}{0.52-x}}](https://tex.z-dn.net/?f=0.42%20%3D%20%5Cfrac%7B%5Bx%5D%5E2%7D%7B0.52-x%7D%7D)
0.42(0.52-x) = x²
0.2184 - 0.42x = x²
x² + 0.42x - 0.2184 = 0 -------------------- (quadratic equation)
Using the quadratic formula;
; ( where +/- represent ± )
= 
= 
=
OR 
=
OR 
=
OR 
= 0.30225 OR - 0.72225
So, we go by the +ve integer that says:
x = 0.30225
x = [
] = [
] = 0.3023 M
∴ the value of [H3O+] for an 0.52 M solution of picric acid = 0.3023 M (to 4 decimal places).
D is the answer, I believe.
An isolated system is one that allows neither heat or matter to enter or exit, and since the liquid remained the same temperature, one can conclude that neither energy nor matter is passing through.