Answer:
Velocity, u = 14.7 m/s
Explanation:
It is given that, a driver can probably survive an acceleration of 50 g that lasts for less than 30 ms, but in a crash with a 50 g acceleration lasting longer than 30 ms, a driver is unlikely to survive.
Let v is the highest speed that the car could have had such that the driver survived. Using a = -50 g and t = 30 ms
Using first equation of kinematics as :

In case of crash the final speed of the driver is, v = 0
u = 14.7 m/s
So, the highest speed that the car could have had such that the driver survived is 14.7 m/s. Hence, this is the required solution.
Answer:
2.1
Explanation:
Calculation of moles of 
Mass of copper = 5.3 g
Molar mass of copper = 315.46 g/mol
The formula for the calculation of moles is shown below:

Thus,

Moles of
= 0.0168 moles
According to the reaction,

1 mole of
react with 1 mole of 
0.0168 moles of
react with 0.0168 moles of 
Moles of
= 0.0168 moles
Molar mass of
= 126.07 g/mol
Thus,
<u>Mass = Moles * Molar mass = 0.0168 moles * 126.07 g/mol = 2.1 g</u>
<u>Answer - 2.1</u>
Answer:
--
--
--Br--
Explanation:
The steps involved in predicting the structure of the alkyl bromide compound are outlined below.
1) An examination of the product shows that the product could only be formed by a substitution reaction.
2) The structure of the alkyl bromide compound can be then predicted by replacing the methoxide group in the product after the substitution of bromine atom. This is because the methoxide ion acts as a strong nucleophile.
Therefore, by consideration the reaction mechanisms of reactions 1 and 2, it can be predicted that the structure of the alkyl bromide compound is
--
--
--Br--
. A pictorial diagram of the alkyl bromide compound is also attached.
Answer:
Option A
Explanation:
Number of millimoles of Na3PO4 = 1 × 100 = 100
Number of millimoles of AgNO3 = 1 × 100 = 100
When 1 mole of Na3PO4 is dissociated we get 3 moles of sodium ions and 1 mole of phosphate ion
When 1 mole of AgNO3 is dissociated, we get 1 mole of Ag+ and 1 mole of NO3-
As Ag+ concentration is negligible, the dissociated Ag+ ion must have form the precipitate with phosphate ion and as number of moles of Ag+ and phosphate ion are same, therefore the concentration of phosphate ion must be negligible
Here as 100 millimoles of Na3PO4 is there, we get 300 millimoles of Na+ and 100 millimoles of PO43-
And as 100 millimoles of AgNO3 is there, we get 100 millimoles of Ag+ and 100 millimoles of NO3-
∴ Increasing order of concentration will be PO43- < NO3- < Na+