What happen as temperature is increased is that the equilibrium will shift to the left that is the side of the reactant.
The increase of temperature in is X +Y⇆XY reaction led to the shift of equilibrium to the left (reactants side). This is because the reaction between X and Y is exothermic(release heat) and thus increase in temperature will led to increase in amount of the product. This led to the shift of the balance at equilibrium toward the reactants side.
Answer:
From the following enthalpy of reaction data and data in Appendix C, calculate ΔH∘f for CaC2(s): CaC2(s)+2H2O(l)→Ca(OH)2(s)+C2H2(g)ΔH∘=−127.2kJ
ΔHf°(C2H2) = 227.4 kJ/mol
ΔHf°(H2O) = -285.8 kJ/mol and
ΔHf°(Ca(OH)2) = -985.2 kJ/mol
(Ans)
ΔHf° of CaC2 = -59.0 kJ/mol
Explanation:
CaC2(s) + 2 H2O(l) → Ca(OH)2(s) + C2H2 (g) = −127.2kJ
ΔHrxn = −127.2kJ
ΔHrxn = ΔHf°(C2H2) + ΔHf°(Ca(OH)2) - ΔHf°(CaC2)- 2ΔHf°(H2O);
ΔHf°(CaC2) = ΔHf°(C2H2) + ΔHf°(Ca(OH)2) - 2ΔHf°(H2O) – ΔHrxn
Where
ΔHf°(C2H2) = 227.4 kJ/mol
ΔHf°(H2O) = -285.8 kJ/mol and
ΔHf°(Ca(OH)2) = -985.2 kJ/mol
ΔHf°(CaC2) =227.4 - 985.2 + 2x285.8 + 127.2 = -59.0 kJ/mol
ΔHf°(CaC2) = -59.0 kJ/mol
Answer:
483.27 minutes
Explanation:
using second faradays law of electrolysis
Following reactions are involved in present reaction
1) A<span>g+(aq) + Li(s) → Ag(s) + Li+(aq) </span><span>− 384.4kJ
2) </span><span>2Fe(s) + 2Na+(aq) → Fe2+(aq) + 2Na(s) + 392.3kJ
</span>3) <span>2K(s) + 2H2O(l) → 2KOH(aq) +H2(g) −393.1kJ
In above reaction, reaction 1 and 3 has negative value of </span>δh∘f, while reaction 2 has posiyive value of <span>δh∘f. As per the sign convention positive sign indicates that heat is given out during the reaction, while negative sign indicates heat is to be supplied for reaction to occur. In alternative words, product formed in reaction 2 is stable as compared to reactant. Hence, it is thermodynamically favorable. </span>