Answer:
Clavulanic acid has two (2) chiral centers.
Explanation:
A chiral center is a center (usually carbon) with four different substituents.
The structure of clavulanic acid is shown in the attachment below.
Consider the labeled diagram in the attachment,
Carbon A is not a chiral carbon because it has two hydrogen atoms attached to it
Carbon B is not a chiral carbon because it has only three substituents
Carbon C is a chiral carbon because it has four different substituents
Carbon D is a chiral carbon because it has four different substituents
Carbon E is not a chiral carbon because it has only three atoms directly attached to it
Carbon F is not a chiral carbon because it has only three atoms directly attached to it
Carbon G is not a chiral carbon because it has two hydrogen atoms attached to it
Carbon H is not a chiral carbon because it has only three substituents
Then, only carbons C and D are chiral carbons.
Hence, clavulanic acid have two (2) chiral centers.
Given that there is 48 liters of gasoline to be burned and that 45 kJ of energy is released per gram of gasoline burned, the amount of energy that the gasoline fuel produces can then be calculated, First, we convert 48 liters of gasoline to units of mass (grams) in order to use the given conversion of 45 kJ per gram of gasoline. To do this, we use the density of gasoline which is 0.77 g/mL. The following expression is then used:
48 L gasoline x 1000 mL/L x 0.77 g/mL x 45 kJ/g gasoline = 1663200 kJ
<span>The amount of energy produced by burning 48 L of gasoline was then determined to be 1663200 kJ. </span>
Answer:
Na₂CO₃ · 10H₂O
Explanation:
The formula for sodium carbonate hydrate is:
Na₂CO₃ · xH₂O
The unknown "x" is the number of water molecules contained in the hydrate.
To find "x" we have to use the hydrogen percentage in the sample, 7.05 % H.
First we calculate the molecular weight of Na₂CO₃ · xH₂O:
molecular weight of Na₂CO₃ · xH₂O = 23 × 2 + 12 + 16 × 3 + 18x
molecular weight of Na₂CO₃ · xH₂O = 106 + 18x g/mole
Now we devise the fallowing reasoning tanking in account 1 mole of Na₂CO₃ · xH₂O:
if in 106 + 18x grams of Na₂CO₃ · xH₂O we have 2x grams of hydrogen
then in 100 grams of Na₂CO₃ · xH₂O we have 7.05 grams of hydrogen
106 + 18x = (100 × 2x) / 7.05
106 + 18x = 28.4x
106 = 28.4x - 18x
106 = 10.4x
x = 106 / 10.4
x = 10.2 ≈ 10
The formula for the washing soda is Na₂CO₃ · 10H₂O.
Hello!
To do this, use the molar mass. This is how much a mole of an atom weighs. A mole is 6.02214076×10²³ atoms.
Molar masses of:
Se: 78.96 g/mol
Cu: 63.546 g/mol
Ba: 137.327 g/mol
Now, the element with the highest molar mass will have the fewest atoms. This is because the element weighs more, so therefore for the same amount of mass, there will be less of the element needed to reach that mass.
Therefore, 10g of Ba would have the fewest number of atoms.
Hope this helps!