Answer:
This is a typical radioactive decay problem which uses the general form:
A = A0e^(-kt)
So, in the given equation, A0 = 192 and k = 0.015. We are to find the amount of substance left after t = 55 years. That would be represented by A. The solution is as follows:
A = 192e^(-0.015*55)
A = 84 mg
Answer:
x=7
y=10.5
Step-by-step explanation:
1. You can apply the method of substitution, as you can see below:
- Substitute
into the other equation and solve fo x:

- Substitute the value of x obtain into the first equation, then the value of y is:

Answer: 23 y 24 ( ó -23 y -24)
Step-by-step explanation:
Dos números consecutivos se escriben como:
n y (n + 1)
done n es un numero entero.
Entonces "El producto de dos números consecutivos es 552"
Se escribe como:
n*(n + 1) = 552
n^2 + n = 552
n^2 + n - 552 = 0
Tenemos una cuadrática, las posibles soluciones son obtenidas con la formula de Bhaskara.

Las dos soluciones son.
n = (-1 - 47)/2 = -48/2 = -24
n = (-1 + 47)/2 = 46/2 = 23
Si tomamos la primer solución, n = -24
Entonces los dos números consecutivos son:
n = -24
(n + 1) = -23
Si n = 23 entonces
n + 1 = 24
Lo cual tiene sentido, por que lo único que cambia son los signos, los cuales se cancelarían en la multiplicación.
Answer:
1. x=±4
2. t=±9
3. r=±10
4. x=±12
5. s=±5
Step-by-step explanation:
1. x^2 = 16
Taking square root on both sides

x=±4
2. t^2=81
Taking square root on both sides

t=±9
3. r^2-100=0

r=±10
4. x²-144=0
x²=144
Taking square root on both sides

x=±12
5. 2s²=50

s=±5 ..
Answer:
The value of √46 is between 6.5 and 7.
Step-by-step explanation:
We can use perfect squares to solve this problem.
1² = 1
2² = 4
3² = 9
4² = 16
5² = 25
6² = 36
7² = 49
A square root reverses the squaring operation. Therefore, if we take the square root of 49, we will get 7.
So, because 46 fits in the interval 36 < 46 < 49, we can solve this problem.
√36 = 6
√46 = ?
√49 = 7
Therefore, using this information, we can see that clearly the value of 46 is closer to 49, meaning that the square root of 46 is between 6.5 and 7.