Answer:
Step-by-step explanation:
Hello!
X₁: speed of a motorcycle at a certain intersection.
n₁= 135
X[bar]₁= 33.99 km/h
S₁= 4.02 km/h
X₂: speed of a car at a certain intersection.
n₂= 42 cars
X[bar]₂= 26.56 km/h
S₂= 2.45 km/h
Assuming
X₁~N(μ₁; σ₁²)
X₂~N(μ₂; σ₂²)
and σ₁² = σ₂²
<em>A 90% confidence interval for the difference between the mean speeds, in kilometers per hour, of motorcycles and cars at this intersection is ________.</em>
The parameter of interest is μ₁-μ₂
(X[bar]₁-X[bar]₂)±
* 


[(33.99-26.56) ± 1.654 *(
)]
[6.345; 8.514]= [6.35; 8.51]km/h
<em>Construct the 98% confidence interval for the difference μ₁-μ₂ when X[bar]₁= 475.12, S₁= 43.48, X[bar]₂= 321.34, S₂= 21.60, n₁= 12, n₂= 15</em>


[(475.12-321.34) ± 2.485 *(
)]
[121.96; 185.60]
I hope this helps!
2 = $1.45
1 = $0.725
anything to ask please pm me
Let Tony's age = x
He is 4 years younger than his brother Josh, so Josh's age would be x + 4
He is 2 years older than his sister, so her age would be x - 2
He has a twin, which would be the same age, so the twins age is also x
They all add together to equal 66, so you get:
x + x + x+4 + x-2 = 66
Simplify:
4x +2 = 66
Subtract 2 from both sides:
4x = 64
Divide both sides by 4:
x = 64/4 = 16
Tony is 16 years old.
Angles RLN and MLK would be vertical angles.
Right. Vertical angles are formed when their
sides share the same lines. RL shares the same line with LM and NL shares the
same line with LK (see the attached diagram), so that means both angles form a vertical
pair.
Angles RLN and MLN would be vertical angles.
Wrong. They are linear pairs, because they
are adjacent and supplementary. Adjacent angles share a side – in this case,
LN. Supplementary angles sum 180°, which you can see is right because the other
sides (ML and RL) are in the same line. RLN and MLN sum the same as the size of
RLM, which is a line, so it’s 180°.
<span>
Angles RLN and KLM would be a linear pair. </span>
Wrong. They would be a vertical pair (see
definition of vertical pair in the first option). RL is opposed to LM and LN is
opposed to KL.
Angles RLN and KLN would be a linear pair.
Wrong. KLN is actually a line, so it’s actually
180°, so it can’t be a linear pair with KLN. Linear pairs sum 180°, which is
impossible because KLN itself is already 180°, so any sum will throw a higher
number.