Answer:
x2 = 64 revolutions.
it rotate through 64 revolutions in the next 5.00 s
Explanation:
Given;
wheel rotates from rest with constant angular acceleration.
Initial angular speed v = 0
Time t = 2.50
Distance x = 8 rev
Applying equation of motion;
x = vt +0.5at^2 ........1
Since v = 0
x = 0.5at^2
making a the subject of formula;
a = x/0.5t^2 = 2x/t^2
a = angular acceleration
t = time taken
x = angular distance
Substituting the values;
a = 2(8)/2.5^2
a = 2.56 rev/s^2
velocity at t = 2.50
v1 = a×t = 2.56×2.50 = 6.4 rev/s
Through the next 5 second;
t2 = 5 seconds
a2 = 2.56 rev/s^2
v2 = 6.4 rev/s
From equation 1;
x = vt +0.5at^2
Substituting the values;
x2 = 6.4(5) + 0.5×2.56×5^2
x2 = 64 revolutions.
it rotate through 64 revolutions in the next 5.00 s
Acceleration, a = (v - u)/t
where v is the final velocity, u is the initial velocity, and t is the time.
This formula on a velocity time graph represents the slope of the graph.
Answer:
Explanation:
To find the half-lifes of the isotope we need to use the following equation:
(1)
<em>where Nt: is the amount of the isotope that has not yet decayed after a time t, N₀: is the initial amount of the isotope, t: is the time and </em>
<em>: is the half-lifes.</em>
By solving equation (1) for t we have:
<u>Having that:</u>
Nt = 450
N₀ = 3150 + 450 = 3600,
The half-lifes of the isotope is:

Therefore, 3 half-lives of the isotope passed since the rock was formed.
I hope it helps you!
A photoelectric cell is an electronic device which is used to convert light energy into electric energy.The operation of this device is based on photoelectric effect.
Light of suitable frequency i.e greater or equal to threshold frequency will fall on the cathode maintained at negative potential.The electron emission will take place and these electrons are drifted towards the anode which is at positive potential.
Here,only those radiations will be capable of emitting electrons irrespective of surface barrier of metals whose energy is greater than the work function.
We know that the radiation having long wavelength has least energy as energy and wavelength are inversely proportional to each other.

Here h is the Planck's constant,c is the velocity of light.
Here we have been given red light and blue light.
In the visible spectrum of radiation, the red light has longer wavelength than all other colors of light.Hence blue light has more energy as it's wavelength is less as compared to red light.
Hence, the blue light will activate the most and red the least.
Answer:

Explanation:
Given that
J(r) = Br
We know that area of small element
dA = 2 π dr
I = J A
dI = J dA
Now by putting the values
dI = B r . 2 π dr
dI= 2π Br² dr
Now by integrating above equation


Given that
B= 2.35 x 10⁵ A/m³
r₁ = 2 mm
r₂ = 2+ 0.0115 mm
r₂ = 2.0115 mm

By putting the values

