Answer:
B
Step-by-step explanation:
<h3>bc I took it and got it right
periodt</h3>
Answer:
A) The probability is 0.95 that the percent of adults living in the United States who are satisfied with their health care plans is between 63.6% and 68.4%.
Step-by-step explanation:
A polling agency reported that 66 percent of adults living in the United States were satisfied with their health care plans. The estimate was taken from a random sample of 1,542 adults living in the United States, and the 95 percent confidence interval for the population proportion was calculated as (0.636, 0.684).
This means that we are 95% sure that the true proportion of adults living in the United States who were satisfied with their health care plans is between 0.636 and 0.684.
So the correct answer is:
A) The probability is 0.95 that the percent of adults living in the United States who are satisfied with their health care plans is between 63.6% and 68.4%.
Answer:
Step-by-step explanation:
Given that a teacher gives a test to a large group of students. The results are closely approximated by a normal curve
mu =74 and sigma =8
A grade starts from 100-8 = 92nd percentile
Z score for 92nd percentile = 1.405
X score = 74+8(1.405) = 85.24
--------------------
B cut off is to next 16%
Hence C would start for scores below 100-(8+16) = 76%
76th percentile = 0.705*8+74 =79.64
Answer:
24 terms
Step-by-step explanation:
The sum of an arithmetic sequence is the average of the first and last terms, multiplied by the number of terms. The last term is given by ...
an = a1 + (n-1)d
We have a sequence with first term a1 = 2 and common difference d = 2. So the last term is ...
an = 2+ 2(n -1) = 2n
Then the average of first and last terms times the number of terms is ...
Sn = 600 = n(2 + 2n)/2 = n(n+1) . . . . . . close to n²
We can solve the quadratic in n, or we can estimate the value of n as the integer just below the square root of 600.
√600 ≈ 24.5
so we believe n = 24.
_____
<em>Check</em>
S24 = 24·25 = 600 . . . . . . as required.
Answer: Option: (B) The range of both f(x) and g(x) is all nonzero real numbers is correct.
Step-by-step explanation: ..................Because I said so............................