Answer : The results would show more amount of water in the hydrated sample.
Explanation :
The amount of water of crystallization can be found by taking the masses of hydrated copper sulfate and anhydrous copper sulfate.
The difference in masses indicates the mass of water lost during dehydration process.
If during dehydration process, some of the copper sulfate spatters out of the crucible, then this would give us less mass for anhydrous sample than the actual.
As a result, the difference in masses of hydrated sample and the anhydrous sample would be more.
Therefore the results would show more amount of water in the hydrated sample.
Answer:
Bi2(SO4)3
Explanation:
Bismuth(iii) sulfate is an ionic compound therefore, their is transfer of electron. Ionic compound has both cations and anions. The cations is positively charged ion while the anions is negatively charged ions. The cations loses electron to become positively charged while the anions gains electron to become negatively charged.
From the compound above, Bismuth(iii) sulfate the cations will be Bismuth ion which loses 3 electrons. The anions is the sulfate ion (S04)2- with a -2 charge.
The chemical formula can be computed from the charge configuration as follows
Bi3+ and (SO4)2-
cross multiply the charges living the sign behind to get the chemical formula
Bi2(SO4)3
Note the final chemical formula, the numbers are sub scripted
Answer:
2 electrons are transfered in this reaction.
Explanation:
Oxidation is a reaction where an atom, ion, or molecule loses electrons, while reduction corresponds to the electron gain of an atom, ion, or molecule.
In an oxidation-reduction reaction two simultaneous processes take place, oxidation and reduction.
So, oxidation-reduction (redox) reactions involve the transfer of electrons between chemical species. They are also called electron transfer reactions since the particle that is exchanged is the electron.
In this case:
Zn(s) ⇒ Zn²⁺(aq) + 2 e⁻
2 Ag⁺ (aq) + 2 e⁻ ⇒ 2 Ag(s)
So, zinc metal loses two electrons to form the zinc(II) ions, while the two silver ions each gain one electron to form two silver metal atoms.
Then, Zn is a reducing agent (The reducing agent is the one that provides the electrons, oxidizing itself), AgNO3 is an oxidizing agent (The oxidizing agent is the one that traps the electrons, reducing itself).
Finally, you can see that <u><em>2 electrons are transfered in this reaction.</em></u>
Answer:
Age of rock = 722 million years old
Explanation:
Using the formula; <em>fraction remaining = 0.5ⁿ</em>
where n = number of half lives elapsed.
However, from the given values, fraction remaining = 1.000 - 0.0105
fraction remaining = 0.9895
Substituting in the formula to determine the number of half-lives:
0.9895 = 0.5ⁿ
log 0.9895 = n log 0.5
-0.0045842 = -0.30103 n
number of half lives elapsed, n = 0.0152
Therefore age of rock = 0.0152 x 4.75 x 10¹⁰ years = 7.22 x10⁸ years
Age of rock = 722 million years old