Answer:
probability of selecting a student who plays a sport but does not watch rugby out of the people who play a sport.
Step-by-step explanation:
"Find the probability that a student chosen at random from those who play a sport does not watch rugby."
90-15= 75 students either play a sport OR watch rugby
65+71-75=
136-75=
61 people play a sport AND watches rugby
14 people play a sport and DOES NOT watch rugby
is the probability of selecting a student who plays a sport but does not watch rugby out of the people who play a sport.
Given:


To find:
The rate of change in volume at 
Solution:
We know that, volume of a cone is

Differentiate with respect to t.
![\dfrac{dV}{dt}=\dfrac{1}{3}\pi\times \left[(r^2\dfrac{dh}{dt}) + h(2r\dfrac{dr}{dt})\right]](https://tex.z-dn.net/?f=%5Cdfrac%7BdV%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7B3%7D%5Cpi%5Ctimes%20%5Cleft%5B%28r%5E2%5Cdfrac%7Bdh%7D%7Bdt%7D%29%20%2B%20h%282r%5Cdfrac%7Bdr%7D%7Bdt%7D%29%5Cright%5D)
Substitute the given values.
![\dfrac{dV}{dt}=\dfrac{1}{3}\times \dfrac{22}{7}\times \left[(120)^2(-2.1) +175(2)(120)(1.4)\right]](https://tex.z-dn.net/?f=%5Cdfrac%7BdV%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7B3%7D%5Ctimes%20%5Cdfrac%7B22%7D%7B7%7D%5Ctimes%20%5Cleft%5B%28120%29%5E2%28-2.1%29%20%2B175%282%29%28120%29%281.4%29%5Cright%5D)
![\dfrac{dV}{dt}=\dfrac{22}{21}\times \left[-30240+58800\right]](https://tex.z-dn.net/?f=%5Cdfrac%7BdV%7D%7Bdt%7D%3D%5Cdfrac%7B22%7D%7B21%7D%5Ctimes%20%5Cleft%5B-30240%2B58800%5Cright%5D)


Therefore, the volume of decreased by 29920 cubic inches per second.
Well I wild have to say 6x4=24
Alice should pick the enlarged-photo with dimensions of 8-inch by 10-inch.
Step-by-step explanation:
Step 1:
In order for a part of the photo to not be cut off, the enlarged photo's dimensions should be of a constant ratio with the original photo's dimensions.
We divide the dimensions of the enlarged-photo with the dimensions of the original photo to check which has a constant ratio.
Step 2:
The original photo was a 4-inch by 5-inch photo.
Option 1 is 7-inch by 9-inch, so the ratios are
The ratios are different so this cannot be the enlarged photo's dimensions.
Option 2 is 8-inch by 10-inch, so the ratios are
The ratios are the same so this can be the enlarged photo's dimensions.
Option 3 is 12-inch by 16-inch, so the ratios are
The ratios are different so this cannot be the enlarged photo's dimensions.
So the enlarged-photo with dimensions of 8-inch by 10-inch should be picked.
the upper bound for the length is
.
<u>Step-by-step explanation:</u>
Lower and Upper Bounds
- The lower bound is the smallest value that will round up to the approximate value.
- The upper bound is the smallest value that will round up to the next approximate value.
Ex:- a mass of 70 kg, rounded to the nearest 10 kg, The upper bound is 75 kg, because 75 kg is the smallest mass that would round up to 80kg.
Here , A length is measured as 21cm correct to 2 significant figures. We need to find what is the upper bound for the length . let's find out:
As discussed above , upper bound for any number will be the smallest value in decimals which will round up to next integer value . So , for 21 :
⇒ 
21.5 cm on rounding off will give 22 cm . So , the upper bound for the length is
.