166 is the right awnser for this
Answer:
(D)The midpoint of both diagonals is (4 and one-half, 5 and one-half), the slope of RP is 7, and the slope of SQ is Negative one-sevenths.
Step-by-step explanation:
- Point P is at (4, 2),
- Point Q is at (8, 5),
- Point R is at (5, 9), and
- Point S is at (1, 6)
Midpoint of SQ 
Midpoint of PR 
Now, we have established that the midpoints (point of bisection) are at the same point.
Two lines are perpendicular if the slope of one is the negative reciprocal of the other.
In option D
- Slope of SQ

Therefore, lines RP and SQ are perpendicular.
Option D is the correct option.
We have been given a system of inequalities and an objective function.
The inequalities are given as:

And the objective function is given as:

In order to find the minimum value of the objective function at the given feasible region, we need to first graph the region.
The graph of the region is shown below:
From the graph, we can see that corner points of the feasible region are:
(x,y) = (15,30),(30,15) and (30,60).
Now we will evaluate the value of the objective function at each of these corner points and then we will compare which of those values is minimum.

Hence the minimum value of objective function is 975 and it occurs at x = 15 and y = 30
Answer:
Step-by-step explanation:
Suppose the cost C(x), to build a football stadium of x thousand square feet is approximated by C(x) = 7,250,000/x + 60. Given the function, we can substitute values for x to determine the cost of a particular size of stadium or we can substitute values for C(x) to determine the number of square feet.
if the cost of the stadium was $8,000, the, we would determine the size of the stadium, x by substituting x $8,000 for C(x). It becomes
8000 = 7250,000/x + 60
8000 - 60 = 7250000/x
7940 = 7250000/x
7940x = 7250000
x = 7250000/ 7940
x = 913 ft^2
Answer:
a) The data distribution consists of ( 7 )1's (denoting a foreign student) and ( 43 )0's (denoting a student from the U.S.).
b) The population distribution consists of the x-values of the population of 12,152 full-time undergraduate students at theuniversity, ( 6 )% of which are 1's (denoting a foreign student) and ( 94 )% of which are 0's (denoting a student from the U.S.).
c) The mean is ( 0.06 )
The standard deviation is ( 0.0336 )
The sampling distribution represents the probability distribution of the ( sample ) proportion of foreign students in a random sample of ( 50 ) students. In this case, the sampling distribution is approximately normal with a mean of ( 0.06 ) and a standard deviation of ( 0.0336 )
Step-by-step explanation: