Given that,
Current = 4 A
Sides of triangle = 50.0 cm, 120 cm and 130 cm
Magnetic field = 75.0 mT
Distance = 130 cm
We need to calculate the angle α
Using cosine law




We need to calculate the angle β
Using cosine law




We need to calculate the force on 130 cm side
Using formula of force



We need to calculate the force on 120 cm side
Using formula of force


The direction of force is out of page.
We need to calculate the force on 50 cm side
Using formula of force


The direction of force is into page.
Hence, The magnitude of the magnetic force on each of the three sides of the loop are 0 N, 0.1385 N and 0.1385 N.
Answer:
This is a conceptual problem so I will try my best to explain the impossible scenario. First of all the two dust particles ara virtually exempt from any external forces and at rest with respect to each other. This could theoretically happen even if it's difficult for that to happen. The problem is that each of the particles have an electric charge which are equal in magnitude and sign. Thus each particle should feel the presence of the other via a force. The forces felt by the particles are equal and opposite facing away from each other so both charges have a net acceleration according to Newton's second law because of the presence of a force in each particle:

Having seen Newton's second law it should be clear that the particles are actually moving away from each other and will not remain at rest with respect to each other. This is in contradiction with the last statement in the problem.
Answer:
option (E) 1,000,000 J
Explanation:
Given:
Mass of the suspension cable, m = 1,000 kg
Distance, h = 100 m
Now,
from the work energy theorem
Work done by the gravity = Work done by brake
or
mgh = Work done by brake
where, g is the acceleration due to the gravity = 10 m/s²
or
Work done by brake = 1000 × 10 × 100
or
Work done by brake = 1,000,000 J
this work done is the release of heat in the brakes
Hence, the correct answer is option (E) 1,000,000 J
Answer:
m = mass of the penny
r = distance of the penny from the center of the turntable or axis of rotation
w = angular speed of rotation of turntable
F = centripetal force experienced by the penny
centripetal force "F" experienced by the penny of "m" at distance "r" from axis of rotation is given as
F = m r w²
in the above equation , mass of penny "m" and angular speed "w" of the turntable is same at all places. hence the centripetal force directly depends on the radius .
hence greater the distance from center , greater will be the centripetal force to remain in place.
So at the edge of the turntable , the penny experiences largest centripetal force to remain in place.
Explanation:
The optimal angle of 45° for maximum horizontal range is only valid when initial height is the same as final height.
<span>In that particular situation, you can prove it like this: </span>
<span>initial velocity is Vo </span>
<span>launch angle is α </span>
<span>initial vertical velocity is </span>
<span>Vv = Vo×sin(α) </span>
<span>horizontal velocity is </span>
<span>Vh = Vo×cos(α) </span>
<span>total time in the air is the the time it needs to fall back to a height of 0 m, so </span>
<span>d = v×t + a×t²/2 </span>
<span>where </span>
<span>d = distance = 0 m </span>
<span>v = initial vertical velocity = Vv = Vo×sin(α) </span>
<span>t = time = ? </span>
<span>a = acceleration by gravity = g (= -9.8 m/s²) </span>
<span>so </span>
<span>0 = Vo×sin(α)×t + g×t²/2 </span>
<span>0 = (Vo×sin(α) + g×t/2)×t </span>
<span>t = 0 (obviously, the projectile is at height 0 m at time = 0s) </span>
<span>or </span>
<span>Vo×sin(α) + g×t/2 = 0 </span>
<span>t = -2×Vo×sin(α)/g </span>
<span>Now look at the horizontal range. </span>
<span>r = v × t </span>
<span>where </span>
<span>r = horizontal range = ? </span>
<span>v = horizontal velocity = Vh = Vo×cos(α) </span>
<span>t = time = -2×Vo×sin(α)/g </span>
<span>so </span>
<span>r = (Vo×cos(α)) × (-2×Vo×sin(α)/g) </span>
<span>r = -(Vo)²×sin(2α)/g </span>
<span>To find the extreme values of r (minimum or maximum) with variable α, you must find the first derivative of r with respect to α, and set it equal to 0. </span>
<span>dr/dα = d[-(Vo)²×sin(2α)/g] / dα </span>
<span>dr/dα = -(Vo)²/g × d[sin(2α)] / dα </span>
<span>dr/dα = -(Vo)²/g × cos(2α) × d(2α) / dα </span>
<span>dr/dα = -2 × (Vo)² × cos(2α) / g </span>
<span>Vo and g are constants ≠ 0, so the only way for dr/dα to become 0 is when </span>
<span>cos(2α) = 0 </span>
<span>2α = 90° </span>
<span>α = 45° </span>