Answer:
2.7x10⁻⁸ N/m²
Explanation:
Since the piece of cardboard absorbs totally the light, the radiation pressure can be found using the following equation:

<u>Where:</u>
: is the radiation pressure
I: is the intensity of the light = 8.1 W/m²
c: is the speed of light = 3.00x10⁸ m/s
Hence, the radiation pressure is:

Therefore, the radiation pressure that is produced on the cardboard by the light is 2.7x10⁻⁸ N/m².
I hope it helps you!
20W = 20 J/s
Energy expended during climbing stairs = 50 W of energy/stair = 50J/stair
For 20 stairs, Total energy = 50x20 = 1000 J
This can light bulbs for, T= 1000J/20 J/s =50 seconds
The correct answer is Option C) Sample C would be best, because the percentage of the energy in an incident wave that remains in a reflected wave from this material is the smallest.
As the coefficient of absorption would define the energy present in the reflected wave, the material C has the highest percentage of absorption i.e. 62% and would be best suitable to make a sound proof room.
To solve this problem we will use the kinematic equations of angular motion in relation to those of linear / tangential motion.
We will proceed to find the centripetal acceleration (From the ratio of the radius and angular velocity to the linear velocity) and the tangential acceleration to finally find the total acceleration of the body.
Our data is given as:
The angular speed
The angular acceleration
The distance
The relation between the linear velocity and angular velocity is

Where,
r = Radius
Angular velocity
At the same time we have that the centripetal acceleration is






Now the tangential acceleration is given as,

Here,
Angular acceleration
r = Radius


Finally using the properties of the vectors, we will have that the resulting component of the acceleration would be



Therefore the correct answer is C.
Answer:
Volume of gasoline that expands and spills out is 1.33 ltr
Explanation:
As we know that when temperature of the liquid is increased then its volume will expand and it is given as

here we know that

volume expansion coefficient of the gasoline is given as

change in temperature is given as


Now we have

