The answer is 27 because not only does it refer to the number line sequence it doesn't actually mean a big number comes behind it. what ever it starts with,it multiplies the same pass the big number
Answer:
The approximate probability that more than 360 of these people will be against increasing taxes is P(Z> <u>0.6-0.45)</u>
√0.45*0.55/600
The right answer is B.
Step-by-step explanation:
According to the given data we have the following:
sample size, h=600
probability against increase tax p=0.45
The probability that in a sample of 600 people, more that 360 people will be against increasing taxes.
We find that P(P>360/600)=P(P>0.6)
The sample proposition of p is approximately normally distributed mith mean p=0.45
standard deviation σ=√P(1-P)/n=√0.45(1-0.45)/600
If x≅N(u,σ∧∧-2), then z=(x-u)/σ≅N(0,1)
Now, P(P>0.6)=P(<u>P-P</u> > <u>0.6-0.45)</u>
σ √0.45*0.55/600
=P(Z> <u>0.6-0.45)</u>
√0.45*0.55/600
1) The outcomes for rolling two dice, the sample space, is as follows:
(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)
There are 36 outcomes in the sample space.
2) The ways to roll an odd sum when rolling two dice are:
(1, 2), (1, 4), (1, 6), (2, 1), (2, 3), (2, 5), (3, 2), (3, 4), (3, 6), (4, 1), (4, 3), (4, 5), (5, 2), (5, 4), (5, 6), (6, 1), (6, 3), (6, 5). There are 18 outcomes in this event.
3) The probability of rolling an odd sum is 18/36 = 1/2 = 0.5
Addends are any of the numbers added together in an equation.
The only time their grouping would matter would be if there were parentheses used to alter the normal Order of Operations.
For ex:
2 - (8 + 3) here, the 8 and 3 have to be grouped together before doing the subtraction.
Any addition problem without parentheses can be used for one where the grouping doesn't matter