<span>The integer -1 has an absolute value of 1, which is greater than itself. Since all negative integers are by definition integers, their respective absolute values will be greater than themselves.</span>
Step-by-step explanation:

The simplest method is "brute force". Calculate each term and add them up.
∑ = 3(1) + 3(2) + 3(3) + 3(4) + 3(5)
∑ = 3 + 6 + 9 + 12 + 15
∑ = 45

∑ = (2×1)² + (2×2)² + (2×3)² + (2×4)²
∑ = 4 + 16 + 36 + 64
∑ = 120

∑ = (2×3−10) + (2×4−10) + (2×5−10) + (2×6−10)
∑ = -4 + -2 + 0 + 2
∑ = -4
4. 1 + 1/4 + 1/16 + 1/64 + 1/256
This is a geometric sequence where the first term is 1 and the common ratio is 1/4. The nth term is:
a = 1 (1/4)ⁿ⁻¹
So the series is:

5. -5 + -1 + 3 + 7 + 11
This is an arithmetic sequence where the first term is -5 and the common difference is 4. The nth term is:
a = -5 + 4(n−1)
a = -5 + 4n − 4
a = 4n − 9
So the series is:

As IQ scores for extensive populaces are focused at 100, the mean = 100.
There ought to be around half scores above or underneath the mean score since mean and middle is about a similar when the populace is substantial.
P(x > 100) = P( z> (100 - 100)/sd ) = P(z > 0)= 0.5
The number of the student who has scored over 100 = 0.5 x 78 = 39 Therefore the answer is 39 students.
<span>The number of dollars collected can be modelled by both a linear model and an exponential model.
To calculate the number of dollars to be calculated on the 6th day based on a linear model, we recall that the formula for the equation of a line is given by (y - y1) / (x - x1) = (y2 - y1) / (x2 - x1), where (x1, y1) = (1, 2) and (x2, y2) = (3, 8)
The equation of the line representing the model = (y - 2) / (x - 1) = (8 - 2) / (3 - 1) = 6 / 2 = 3
y - 2 = 3(x - 1) = 3x - 3
y = 3x - 3 + 2 = 3x - 1
Therefore, the amount of dollars to be collected on the 6th day based on the linear model is given by y = 3(6) - 1 = 18 - 1 = $17
To calculate the number of dollars to be calculated on the 6th day based on an exponential model, we recall that the formula for exponential growth is given by y = ar^(x-1), where y is the number of dollars collected and x represent each collection day and a is the amount collected on the first day = $2.
8 = 2r^(3 - 1) = 2r^2
r^2 = 8/2 = 4
r = sqrt(4) = 2
Therefore, the amount of dollars to be collected on the 6th day based on the exponential model is given by y = 2(2)^(5 - 1) = 2(2)^4 = 2(16) = $32</span>