The question is missing parts. Here is the complete question.
Let M =
. Find
and
such that
, where
is the identity 2x2 matrix and 0 is the zero matrix of appropriate dimension.
Answer: 

Step-by-step explanation: Identity matrix is a sqaure matrix that has 1's along the main diagonal and 0 everywhere else. So, a 2x2 identity matrix is:
![\left[\begin{array}{cc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
![M^{2} = \left[\begin{array}{cc}6&5\\-1&-4\end{array}\right]\left[\begin{array}{cc}6&5\\-1&-4\end{array}\right]](https://tex.z-dn.net/?f=M%5E%7B2%7D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%265%5C%5C-1%26-4%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%265%5C%5C-1%26-4%5Cend%7Barray%7D%5Cright%5D)
![M^{2}=\left[\begin{array}{cc}31&10\\-2&15\end{array}\right]](https://tex.z-dn.net/?f=M%5E%7B2%7D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D31%2610%5C%5C-2%2615%5Cend%7Barray%7D%5Cright%5D)
Solving equation:
![\left[\begin{array}{cc}31&10\\-2&15\end{array}\right]+c_{1}\left[\begin{array}{cc}6&5\\-1&-4\end{array}\right] +c_{2}\left[\begin{array}{cc}1&0\\0&1\end{array}\right] =\left[\begin{array}{cc}0&0\\0&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D31%2610%5C%5C-2%2615%5Cend%7Barray%7D%5Cright%5D%2Bc_%7B1%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%265%5C%5C-1%26-4%5Cend%7Barray%7D%5Cright%5D%20%2Bc_%7B2%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0%260%5C%5C0%260%5Cend%7Barray%7D%5Cright%5D)
Multiplying a matrix and a scalar results in all the terms of the matrix multiplied by the scalar. You can only add matrices of the same dimensions.
So, the equation is:
![\left[\begin{array}{cc}31&10\\-2&15\end{array}\right]+\left[\begin{array}{cc}6c_{1}&5c_{1}\\-1c_{1}&-4c_{1}\end{array}\right] +\left[\begin{array}{cc}c_{2}&0\\0&c_{2}\end{array}\right] =\left[\begin{array}{cc}0&0\\0&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D31%2610%5C%5C-2%2615%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6c_%7B1%7D%265c_%7B1%7D%5C%5C-1c_%7B1%7D%26-4c_%7B1%7D%5Cend%7Barray%7D%5Cright%5D%20%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dc_%7B2%7D%260%5C%5C0%26c_%7B2%7D%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0%260%5C%5C0%260%5Cend%7Barray%7D%5Cright%5D)
And the system of equations is:

There are several methods to solve this system. One of them is to multiply the second equation to -1 and add both equations:




With
, substitute in one of the equations and find
:





<u>For the equation, </u>
<u> and </u>
<u />
The residual value comes out to be 2.94 cm and height is 157.06 cm
<u>Explanation:</u>
The regression equation is calculated at the first step.
height = 105.08 plus 2.599 multiply foot length
At foot length = 20cm, height = 105.08 plus 2.599 multiply 20
= 157.06 cm
Residual = Actual minus predicted value = 160 minus 157.06
=2.94 cm
B) The residual standard deviation generally gives a sense of the goodness of fit of goodness of regression equation on our data. The magnitude tells us that how much will be predicted values from model will vary from actual values. the linear model is justified.
To add these amounts together, we must first find their least common multiple in order to get common denominators (b/c when you add fractions, the denominators must be the same).
We'll start by listing some of their multiples.
To do this, count by whatever the denominator is:
4 1/2 (denominator is 2): 2 4 6 8 10 12 14
2 1/4 (denominator is 4): 4 8 12 16
6 1/3 (denominator is 3): 3 6 9 12 15
Look and see which is the first multiple that all three denominators have. Circle them if it helps you. In this case, it's 12.
So now we have to multiply the denominators by whatever number it takes to reach 12, and multiply by the same number to the numerator:
4 1/2 (times 6 to both top and bottom) =
4 6/12
2 1/4 (times 3) = 2 3/12
6 1/3 (times 4) = 6 4/12
Add all these fractions together, and you get 12 13/12, which is equal to 13 1/12.
Thus, Peter makes a total of 13 1/2 cups.
Hope this made sense! tell me if anything is confusing/incorrect :))
Answer:
3(x32+12)
Step-by-step explanation:
Answer:
273.38
Step-by-step explanation:
815.70 * 6.2% = 50.57
815.70 * 1.45% = 11.83
815.70 * 19% = 154.95
Add those 3 totals to the additional $56 in federal tax
56+50.57+11.83+154.95 = 273.35