Answer:
1. Saturated hydrocarbons may be cyclic or acyclic molecules.
2. An unsaturated hydrocarbon molecule contains at least one double bond.
Explanation:
Hello,
In this case, hydrocarbons are defined as the simplest organic compounds containing both carbon and hydrogen only, for that reason we can immediately discard the third statement as ethylenediamine is classified as an amine (organic chain containing NH groups).
Next, as saturated hydrocarbons only show single carbon-to-carbon bonds and carbon-to-hydrogen bonds, they may be cyclic (ring-like-shaped) or acyclic (not forming rings), so first statement is true
Finally, since we can find saturated hydrocarbons which have single carbon-to-carbon and carbon-to-hydrogen bonds only and unsaturated hydrocarbons which could have double or triple bonds between carbons and carbon-to-hydrogen bonds, the presence of at least one double bond makes the hydrocarbon unsaturated.
Therefore, first and second statements are correct.
Best regards.
Answer is: a lower freezing point has solution of K₂SO₄.
Change in freezing
point from pure solvent to solution: ΔT =i · Kf · b.<span>
Kf - molal freezing-point depression constant for water is 1.86°C/m.
b - molality, moles of solute per
kilogram of solvent.
i - </span>Van't
Hoff factor.<span>
b(K</span>₂SO₄<span>) = 0.35 m.
</span>b(KCl) = 0.5 m.
i(K₂SO₄) = 3.
i(KCl) = 2.
ΔT(K₂SO₄) = 3 · 0.35 m · 1.86°C/m.
ΔT(K₂SO₄) = 1.953°C.
ΔT(KCl) = 2 · 0.5 m · 1.86°C/m.
ΔT(KCl) = 1.86°C.
Answer:
C is the element thats has been oxidized.
Explanation:
MnO₄⁻ (aq) + H₂C₂O₄ (aq) → Mn²⁺ (aq) + CO₂(g)
This is a reaction where the manganese from the permanganate, it's reduced to Mn²⁺.
In the oxalic acid, this are the oxidation states:
H: +1
C: +3
O: -2
In the product side, in CO₂ the oxidation states are:
C: +4
O: -2
Carbon from the oxalate has increased the oxidation state, so it has been oxidized.
<span>There
are a number of ways to express concentration of a solution. This includes
molarity. Molarity is expressed as the number of moles of solute per volume of
the solution. We calculate the mass of the solute by first determining the number of moles needed. And by using the molar mass, we can convert it to units of mass.
Moles </span>(nh4)3po4 = 0.250 L (0.150 M) = 0.0375 moles (nh4)3po4
Mass = 0.0375 mol (nh4)3po4 (149.0867 g / mol) = 5.59 g (nh4)3po4
Answer:
Explanation:
As per Boltzman equation, <em>kinetic energy (KE)</em> is in direct relation to the <em>temperature</em>, measured in absolute scale Kelvin.
Then, <em>the temperature at which the molecules of an ideal gas have 3 times the kinetic energy they have at any given temperature will be </em><em>3 times</em><em> such temperature.</em>
So, you must just convert the given temperature, 32°F, to kelvin scale.
You can do that in two stages.
- First, convert 32°F to °C. Since, 32°F is the freezing temperature of water, you may remember that is 0°C. You can also use the conversion formula: T (°C) = [T (°F) - 32] / 1.80
- Second, convert 0°C to kelvin:
T (K) = T(°C) + 273.15 K= 273.15 K
Then, <u>3 times</u> gives you: 3 × 273.15 K = 819.45 K
Since, 32°F has two significant figures, you must report your answer with the same number of significan figures. That is 820 K.