Answer:
- Andre subtracted 3x from both sides
- Diego subtracted 2x from both sides
Step-by-step explanation:
<u>Andre</u>
Comparing the result of Andre's work with the original, we see that the "3x" term on the right is missing, and the x-term on the left is 3x less than it was. It is clear that Andre subtracted 3x from both sides of the equation.
__
<u>Diego</u>
Comparing the result of Diego's work with the original, we see that the "2x" term on the left is missing, and the x-term on the right is 2x less than it was. It is clear that Diego subtracted 2x from both sides of the equation.
_____
<em>Comment on their work</em>
IMO, Diego has the right idea, as his result leaves the x-term with a positive coefficient. He can add 8 and he's finished, having found that x=14.
Andre can subtract 6 to isolate the variable term, and that will give him -x=-14. This requires another step to get to x=14. Sometimes minus signs get lost, so this would not be my preferred sequence of steps.
As a rule, I like to add the opposite of the variable term with the least (most negative) coefficient. This results in the variable having a positive coefficient, making errors easier to avoid.
Katie is 6; Cathy is 18!
X- Katie’s age now and 3x -Cathys age now
In 6 years, Katie is 12 and Cathy is 24.
2 x (X+6) = 3x + 6
2x + 12 = 3x + 6
6 = x
Consider the coordinate plane:
1. The origin is the point where Sharon and Jacob started - (0,0).
2. North - positive y-direction, south - negetive y-direction.
3. East - positive x-direction, west - negative x-direction.
Then,
- if Jacob walked 3 m north and then 4 m west, the point where he is now has coordinates (-4,3);
- if Sharon walked 5 m south and 12 m east, the point where she is now has coordinates (12,-5).
The distance between two points with coordinates
and
can be calculated using formula

Therefore, the distance between Jacob and Sharon is

Hello,
Here is the demonstration in the book Person Guide to Mathematic by Khattar Dinesh.
Let's assume
P=cos(a)*cos(2a)*cos(3a)*....*cos(998a)*cos(999a)
Q=sin(a)*sin(2a)*sin(3a)*....*sin(998a)*sin(999a)
As sin x *cos x=sin (2x) /2
P*Q=1/2*sin(2a)*1/2sin(4a)*1/2*sin(6a)*....
*1/2* sin(2*998a)*1/2*sin(2*999a) (there are 999 factors)
= 1/(2^999) * sin(2a)*sin(4a)*...
*sin(998a)*sin(1000a)*sin(1002a)*....*sin(1996a)*sin(1998a)
as sin(x)=-sin(2pi-x) and 2pi=1999a
sin(1000a)=-sin(2pi-1000a)=-sin(1999a-1000a)=-sin(999a)
sin(1002a)=-sin(2pi-1002a)=-sin(1999a-1002a)=-sin(997a)
...
sin(1996a)=-sin(2pi-1996a)=-sin(1999a-1996a)=-sin(3a)
sin(1998a)=-sin(2pi-1998a)=-sin(1999a-1998a)=-sin(a)
So sin(2a)*sin(4a)*...
*sin(998a)*sin(1000a)*sin(1002a)*....*sin(1996a)*sin(1998a)
= sin(a)*sin(2a)*sin(3a)*....*sin(998)*sin(999) since there are 500 sign "-".
Thus
P*Q=1/2^999*Q or Q!=0 then
P=1/(2^999)
Let x = the number of marbles for Phil
Then 3x = the number of marbles for Peter
Together they have 3x+x=48 or 4x=48 and x=12
So Phil has x = 12 marbles and Peter has 3x, let x = 12, 3(12) = 36 marbles.
Peter has 24 more marbles than Phil.