The thermal energy is where the work of friction comes from. That is what stops it eventually. In this case a counter force of 10N is applied over the distance of 30.0m. The energy is given by Force*Distance. Here this is 300J. This friction work is the thermal energy.
Answer:
v = 38.73 m/s
Explanation:
Given
Extension of the bow, x = 50 cm = 0.5 m
Force of the arrow, F = 150 N
Mass of the arrow, m = 50 g = 0.05 kg
speed of arrow, v = ? m/s
We start by finding the spring constant
Remember, F = kx, so
k = F/x
k = 150 / 0.5
k = 300 N/m
the potential energy if the bow when pulled back is
E = 1/2kx²
E = 1/2 * 300 * 0.5²
E = 0.5 * 300 * 0.25
E = 37.5 J
The speed of the arrow will now be found by using the law of conservation of energy
1/2kx² = 1/2mv²
kx² = mv²
v² = kx²/m, on substituting, we have
v² = (300 * 0.5²) / 0.05
v² = 75 / 0.05
v² = 1500
v = √1500
v = 38.73 m/s
Answer:
The change in the centripetal acceleration of the brother,
Δa = V₂²/R - V₁²/R
Explanation:
Given data,
A sister spins her brother in a circle of radius, R
The angular velocity of the brother, ω₁ = V₁/R
The angular velocity of the brother, ω₂ = V₂/R
The centripetal acceleration is given by the relation
a = V²/R
Therefore change in the centripetal acceleration of the brother,
Δa = V₂²/R - V₁²/R
<em>Iron, and to a lesser degree, steel, can only become magnetised by passing an electrical current through it (an electromagnet). So a steel ship does not become magnetised in the accepted sense during construction. </em>
<span><em>However, any large mass of iron will affect the accuracy of a magnetic compass, causing it to deviate wildly from magnetic North. This problem was encountered when iron ships were first constructed in the mid-19 Century. It was overcome by mounting the compass in a 'binnacle', a housing containing two large soft iron balls either side of the compass itself, which counteracted the effect of the hull and balanced the compass so that it read correctly</em></span>
Answer:
both cannonballs hit the ships with the same horizontal speed
Explanation:
Hello!
A parabolic motion is characterized in that its vertical component in Y is constantly changing, this is due to the constant downward acceleration of gravity.
When the movement starts the speed at Y is maximum, then when it reaches its maximum height point its speed is zero, and finally it begins to increase downwards until it touches the floor.
On the other hand, the horizontal speed remains constant AS THERE IS NO ACCELERATION IN HORIZONTAL DIRECTION.
therefore both cannonballs hit the ships with the same horizontal speed
regards!