The moles of chromium (iii) nitrate produced is calculated as follows
write the equation for reaction
3 Pb(NO3)2 + 2 Cr = 2 Cr(NO3)3 + 3 Pb
by use of mole ratio between Pb(NO3)2 to Cr(NO3)3 which is 3 : 2 the moles of Cr(NO3)3 is therefore
= 0.85 x2 /3 = 0.57 moles
Mass = ?
Density = 2.70 g/mL
Volume = 276 mL
Therefore:
D = m / V
2.70 = m / 276
m = 2.70 x 276
m = 745.2 g
Answer:
It is required answer.
Explanation:
Given that :
1. using balanced chemical equation:
ammonium acetate:
The balanced equation is:
NH₃ + H₂O ===> NH₄OH
when ammonia gas dissolves in water then we get the base in form of ammonium hydroxide.
When NH₄OH reacts with CH₃COOH then we get ammonium acetate and water
NH₄OH + CH₃COOH ===> [CH₃COO]- & NH₄+ & H₂O
So, we can say that,
when we are adding an acid and a base together then we get the product of H₂O and given elements.
2. addition of barium hydroxide to sulfuric acid:
the balanced equation is
H₂SO4+ Ba(OH)₂--> BaSO₄+ 2H₂O
when acid and base reacts together than we get barium sulphate and water
when sulfuric acid and barium hydroxide.
Hence, it is required answer.
Answer:
Less than
Explanation:
The process of dissolution occurs as a kind of "tug of war". On one side are the solute-solute and solvent-solvent interaction forces, while on the other side are the solute-solvent forces.
Only when the solute-solvent forces are strong enough to overcome the pre-mixing forces do they overcome the "tug of war", and thus dissolution occurs.
Thus, it is concluded that the interaction forces between solute particles and solvent particles before they are combined are less than the interaction forces after dissolution.
Answer: 3 <span>moles of water would be produced in present case.
</span>
Reason:
Reaction involved in present case is:
<span> C5H12 + 8O2 </span>→<span> 5CO2 + 6H2O
In above reaction, 1 mole of C5H12 reacts with 8 moles of oxygen to give 6 moles of water.
Thus, 4 moles of oxygen will react with 0.5 mole of C5H12, to generate 3 moles of H2O.</span>