answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ugo [173]
2 years ago
7

A bar on a hinge starts from rest and rotates with an angular acceleration α = 12 + 5t, where α is in rad/s2 and t is in seconds

. Determine the angle in radians through which the bar turns in the first 4.88 s.
Physics
1 answer:
Rama09 [41]2 years ago
5 0

Answer:

Ф = 239.73 rad

Explanation:

α = 12 + 15×t

W = ∫α×dt

   = ∫(12 + 5×t)×dt

   = 12×t + 2.5×t^2

then:

Ф = ∫W×dt

   = ∫(12×t + 2.5×t^2)dt

   = 6×t^2 + 5/6×t^3

therefore the angle at t = 4.88s is:

Ф = 6×(4.88)^2 + 5/6×(4.88)^3

   = 239.73 rad    

You might be interested in
X-rays with an energy of 300 keV undergo Compton scattering from a target. If the scattered rays are detected at 30 relative to
lys-0071 [83]

Answer:

a) \Delta \lambda = \lambda' -\lambda_o = \frac{h}{m_e c} (1-cos \theta)

For this case we know the following values:

h = 6.63 x10^{-34} Js

m_e = 9.109 x10^{-31} kg

c = 3x10^8 m/s

\theta = 37

So then if we replace we got:

\Delta \lambda = \frac{6.63x10^{-34} Js}{9.109 x10^{-31} kg *3x10^8 m/s} (1-cos 37) = 4.885x10^{-13} m * \frac{1m}{1x10^{-15} m}= 488.54 fm

b) \lambda_0 = \frac{hc}{E_0}

With E_0 = 300 k eV= 300000 eV

And replacing we have:

\lambda_0 = \frac{1240 x10^{-9} eV m}{300000eV}=4.13 x10^{-12}m = 4.12 pm

And then the scattered wavelength is given by:

\lambda ' = \lambda_0 + \Delta \lambda = 4.13 + 0.489 pm = 4.619 pm

And the energy of the scattered photon is given by:

E' = \frac{hc}{\lambda'}= \frac{1240x10^{-9} eVm}{4.619x10^{-12} m}=268456.37 eV - 268.46 keV

c) E_f = E_0 -E' = 300 -268.456 kev = 31.544 keV

Explanation

Part a

For this case we can use the Compton shift equation given by:

\Delta \lambda = \lambda' -\lambda_0 = \frac{h}{m_e c} (1-cos \theta)

For this case we know the following values:

h = 6.63 x10^{-34} Js

m_e = 9.109 x10^{-31} kg

c = 3x10^8 m/s

\theta = 37

So then if we replace we got:

\Delta \lambda = \frac{6.63x10^{-34} Js}{9.109 x10^{-31} kg *3x10^8 m/s} (1-cos 37) = 4.885x10^{-13} m * \frac{1m}{1x10^{-15} m}= 488.54 fm

Part b

For this cas we can calculate the wavelength of the phton with this formula:

\lambda_0 = \frac{hc}{E_0}

With E_0 = 300 k eV= 300000 eV

And replacing we have:

\lambda_0 = \frac{1240 x10^{-9} eV m}{300000eV}=4.13 x10^{-12}m = 4.12 pm

And then the scattered wavelength is given by:

\lambda ' = \lambda_0 + \Delta \lambda = 4.13 + 0.489 pm = 4.619 pm

And the energy of the scattered photon is given by:

E' = \frac{hc}{\lambda'}= \frac{1240x10^{-9} eVm}{4.619x10^{-12} m}=268456.37 eV - 268.46 keV

Part c

For this case we know that all the neergy lost by the photon neds to go into the recoiling electron so then we have this:

E_f = E_0 -E' = 300 -268.456 kev = 31.544 keV

3 0
2 years ago
Read 2 more answers
If the charge that enters each meter of the axon gets distributed uniformly along it, how many coulombs of charge enter a 0.100
SCORPION-xisa [38]

Answer:

Charge enter a 0.100 mm length of the axon is 8.98\times 10^{-12} C

Explanation:

Electric field E at a point due to a point charge is given by

E=k \frac{q}{r^2}

where k is the constant =9.0 \times 10^9  Nm^2 / C^2

q is the magnitude of point charge and r is the distance from the point charge

Charges entering one meter of axon is 5.\times 10^{11} \times (+e)

Charges entering 0.100 mm of axon is 5.\times 10^{11} \times (+e) \times (0.1 \times 10^{-3}

substituting the value of +e=1.6\times 10^{-19} C in above equation, we get charge enter a 0.100 mm length of the axon is

q=5.\times 10^{11} \times1.6\times 10^{-19}  \times (0.1 \times 10^{-3}\\q=8.98\times 10^{-12} C

3 0
2 years ago
answers Collision derivation problem. If the car has a mass of 0.2 kg, the ratio of height to width of the ramp is 12/75, the in
Natasha2012 [34]

Answer:

4.8967m

Explanation:

Given the following data;

M = 0.2kg

∆p = 0.58kgm/s

S(i) = 2.25m

Ratio h/w = 12/75

Firstly, we use conservation of momentum to find the velocity

Therefore, ∆p = MV

0.58kgm/s = 0.2V

V = 0.58/2

V = 2.9m/s

Then, we can use the conservation of energy to solve for maximum height the car can go

E(i) = E(f)

1/2mV² = mgh

Mass cancels out

1/2V² = gh

h = 1/2V²/g = V²/2g

h = (2.9)²/2(9.8)

h = 8.41/19.6 = 0.429m

Since we have gotten the heigh, the next thing is to solve for actual slant of the ramp and initial displacement using similar triangles.

h/w = 0.429/x

X = 0.429×75/12

X = 2.6815

Therefore, by Pythagoreans rule

S(ramp) = √2.68125²+0.429²

S(ramp) = 2.64671

Finally, S(t) = S(ramp) + S(i)

= 2.64671+2.25

= 4.8967m

3 0
2 years ago
You have two lightweight metal spheres, each hanging from an insulating nylon thread. One of the spheres has a net negative char
kkurt [141]

Answer:attract each other

Explanation:

When two-sphere, one with a negative charge and another neutral is brought close together but do not touch then they try to attract each other.

This because of the polarization of the neutral sphere as it is placed in the vicinity of a negatively charged sphere. The negatively charged sphere will induce the positive charge in the neutral sphere and they will attract each other according to Columb law.

8 0
2 years ago
A steel cable 1.25 in. in diameter and 50 ft long is to lift a 20-ton load without permanently deforming. What is the length of
Over [174]

Answer:

50.0543248872 ft

Explanation:

F = Load = 20 ton = 20\times 2000\ lb

d = Diameter = 1.25 in

L_1 = Initial length = 50 ft

L_2 = Final length

A = Area = \dfrac{\pi}{4}d^2

Y = Young's modulus = 30\times 10^6\ psi

Young's modulus is given by

Y=\dfrac{FL}{A\Delta L}\\\Rightarrow Y=\dfrac{FL_1}{\dfrac{\pi}{4}d^2(L_2-L_1)}\\\Rightarrow L_2=\dfrac{4FL_1}{Y\pi d^2}+L_1\\\Rightarrow L_2=\dfrac{4\times 40000\times 50}{30\times 10^6\times \pi\times 1.25^2}+50\\\Rightarrow L_2=50.0543248872\ ft

The length during the lift is 50.0543248872 ft

6 0
2 years ago
Other questions:
  • The formula for calculating power is work divided by time (power = work ÷ time). What are two ways of stating the same relations
    8·2 answers
  • In a digital multimeter, what changes inside the meter when you push the button to change from 200v range to the 20v range? by w
    7·1 answer
  • The voltage across the primary winding is 6000 V. If the primary winding has 50 coils and the secondary winding has 20 coils, wh
    11·2 answers
  • When the metallic body of a car is moved into a painting chamber, a mist of electrically neutral paint is sprayed around the car
    12·1 answer
  • A truck of mass 1800kg is moving with a speed 54km/h. When brakes are applied, it
    12·1 answer
  • A barge is 10.0 m wide and 60.0 m long and has vertical sides. The bottom of the hull is 12.0 m below the water surface. What ar
    8·1 answer
  • Carry's car has a mass of 1000 kg and its brakes can apply 8000 N of force. If she is driving at 24 m/s and sees something in th
    5·1 answer
  • Suppose that at room temperature, a certain aluminum bar is 1.0000 m long. The bar gets longer when its temperature is raised. T
    14·1 answer
  • Which change will cause the gravitational force between a baseball and a soccer ball to increase?
    9·2 answers
  • A 3400 kg jet is flying at a constant speed of 170 m/s as it makes a vertical loop. At the top of the loop the pilot feels three
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!