Because charges are positioned on a square the force acting on one charge is the same as the force acting on all others.
We will use superposition principle. This means that force acting on the charge is the sum of individual forces. I have attached the sketch that you should take a look at.
We will break down forces on their x and y components:


Let's figure out each component:


Total force acting on the charge would be:

We need to calculate forces along x and y axis first( I will assume you meant micro coulombs, because otherwise we get forces that are huge).


Now we can find the total force acting on a single charge:

As said before, intensity of the force acting on charges is the same for all of them.
Answer:
3.1 m/s²
Explanation:
Given:
Mass of the balloon (m) = 11.4 g = 0.0114 kg ( 1 kg = 1000 g)
Force acting on the balloon (F) = 0.035 N
Acceleration with which the balloon must be hit (a) = ?
Now, we know that, from Newton's second law, net force acting on an object is equal to the product of its mass and acceleration.
Therefore, framing in equation form, we have:

Rewriting in terms of acceleration 'a', we get:

Now, substitute the given values and solve for 'a'. This gives,

Therefore, the acceleration of the water balloon to reach the target must be equal to 3.1 m/s².
Your answer is A. If velocity decreases, your kinetic energy would also decrease.
Since the main objective of this experiment is to determine the effect of porosity on seedling growth that should be the only independent variable. In short, that is the only variable that should be different to ensure fair testing.
The answer should be B:
he plants seedlings in soils with different levels of porosity and equal levels of permeability.
Permeability is not what needs to be tested. If it changes, you may not be able to determine whether it was the porosity or permeability that cause changes.