Answer:

Explanation:
Hello!
In this case, given the initial conditions, we first use the 10-% quality to compute the initial entropy:

Now the entropy at the final state given the new 40-% quality:

Next step is to compute the mass of steam given the specific volume of steam at 175 kPa and the 10% quality:

Then, we can write the entropy balance:

Whereas sfg stands for the entropy of the leaving steam to hold the pressure at 150 kPa and must be greater than 0; thus we plug in:
Which is such minimum entropy change of the heat-supplying source.
Best regards!
Answer:
21.16 MPa
Explanation:
Partial pressure of oxygen = 5.62 MPa
Total gas pressure = 26.78 MPa
But
Total pressure of the gas= sum of partial pressures of all the constituent gases in the system.
This implies that;
Total pressure of the system = partial pressure of nitrogen + partial pressure of oxygen
Hence partial pressure of nitrogen=
Total pressure of the system - partial pressure of oxygen
Therefore;
Partial pressure of nitrogen= 26.78 - 5.62
Partial pressure of nitrogen = 21.16 MPa
Answer:
Follows are the explanation to this question:
Explanation:
When the drug is negatively charged, its negative electrolyte is annihilated to just the positive electrode. It is enticed, and it may not have a picture showing the electrode, however, We suppose that electrodes from either side of a skin slice. Its negative electrode will bypass or push thru the skin if in front of the counter terminal this becomes a red-positive electrode.
Answer:
1.216mol
Explanation:
The molar mass of C₄H₁₀ is (12 x4)+ (1x 10) = 48 + 10 = 58g
1 grams C4H10 is equal to 0.017205129881525 mole.
70.7 grams = 70.7 x 0.017205129881525 = 1.216mol
Answer:
There are 0.09996826 moles per liter of the solution.
Explanation:
Molar mass of HNO3: 63.02
Convert grams to moles
0.63 grams/ 63.02= 0.009996826
Convert mL to L and place under moles (mol/L)
100mL=0.1 L
0.009996826/0.1= 0.09996826 mol/L